Muscle Atrophy: Causes, Treatment and Prevention

Learn about what causes muscle wasting or muscle atrophy, and how best to prevent and treat this condition, including through the use of physical therapy, medical intervention, and staying active. 

Muscle atrophy is essentially muscle wasting: it’s what happens when your muscles waste away, frequently as a result of a lack of physical activity. This article will explore the causes and symptoms of muscle atrophy, as well as preventative steps people can take if they’re immobile or bedridden due to illness. Loss of muscle mass or muscle strength can be particularly devastating for those who are already in positions of compromised health, and so in an effort to help you maintain your quality of life, we’ve compiled the relevant information here.

Muscle Atrophy: Definition

Atrophy of the muscles occurs when a person is inactive for so long that their skeletal muscles (these are the muscles attached to your bones which literally make your skeleton move) begin to break down, and the muscle protein is cannibalized by the body. This can happen in small instances or large, catastrophic instances.

Muscle atrophy of the hand or forearm may occur if you spend weeks in a cast to heal a broken arm, which is why people in casts are given exercises to do while they’re immobilized to prevent protein degradation in their muscles and muscle wasting. Muscle atrophy of the legs or muscle atrophy of the thighs can happen on a much larger scale to those who become wheelchair-bound, either temporarily or due to becoming permanently paraplegic. In even more extreme cases, those who have been held as prisoners of war may have full-body muscle wasting due to confinement and malnutrition for significantly long periods, sometimes years.

Muscle atrophy is a decrease in muscle mass, either partial or complete, which is most commonly suffered when a person becomes disabled or their movements severely restricted. This makes it difficult or impossible to move the part of the body where the muscle has atrophied, and medical advice should be sought for solutions.

Muscle atrophy: causes, treatment, and prevention.

Muscle Atrophy: Causes

Significant decreases in activity levels can lead to muscle atrophy, and there are many situations where that can occur, causing what’s known as disuse atrophy. There are also instances of muscle atrophy due to medical conditions that inhibit the use of a body part, and even rarer causes like the muscle atrophy experienced by astronauts after relatively short periods (a few days) of weightlessness. Muscle atrophy in situations of being bedbound or ceasing intense physical training can come on in as little as 2 weeks. Some of the other causes of muscle atrophy are as follows.

  • Lack of physical activity
  • Advanced aging
  • Malnutrition
  • Stroke
  • Alcohol-associated myopathy
  • Burns
  • Temporary disabling injuries (broken bones, torn rotator cuff)
  • Permanently disabling injuries (severed spinal cord, peripheral nerve damage)
  • Prolonged corticosteroid therapy

Some of the diseases and medical conditions that can disrupt or restrict movement, thus leading to muscle atrophy, include:

  • Spinal muscular atrophy: A hereditary wasting disease of the limbs.
  • Osteoarthritis: Degeneration of bones and joint cartilage that leads to decreased movement.
  • Polymyositis: An inflammatory disease of the muscles.
  • Amyotrophic lateral sclerosis (ALS or Lou Gehrig’s disease): Compromises the nerve cells of the spinal cord.
  • Muscular dystrophy: A hereditary disease that causes muscle weakness.
  • Multiple sclerosis (MS): An autoimmune disease that destroys the protective sheathing of brain and spinal nerves.
  • Rheumatoid arthritis (RA): A chronic inflammatory disease of the joints.
  • Dermatomyositis: Inflammation of the skin and underlying muscle tissue.
  • Polio: A virus afflicting muscle tissue, which can lead to paralysis.
  • Cancer cachexia: The weight loss, lack of energy, and loss of appetite in someone undergoing cancer treatment.
  • Guillain-Barré syndrome: An autoimmune disease and form of polyneuritis, which leads to paralysis of the limbs.
  • Neuropathy: Nerve damage that results in loss of sensation or functioning.

Muscle Atrophy: Symptoms

Regardless of the cause, these are the symptoms that may alert you to possible muscle atrophy, after which a trusted medical professional should be sought for advice.

  • One of your limbs (arms, legs) appears markedly smaller than the other one.
  • You’ve spent a long time physically inactive (bedridden, hospitalized).
  • You’re experiencing noticeable weakness in one limb.

Not to be flippant about the subject, but there is some truth to the phrase “use it or lose it” when it comes to muscle. If you cannot move your muscles with regular physical activity, you will start to lose them.

Muscle atrophy pain may or may not be a symptom, as that depends on the cause of the atrophy. Many people will begin to lose muscle before they are aware it’s happening, and will have to rely on visual muscle size to realize they need medical attention.

Muscle Atrophy: Diagnosis

Once you’ve gotten in contact with a medical professional, the diagnosis may involve your full medical history, a review of any previous injuries, as well as an evaluation of your symptoms. Diagnosing the atrophy may also involve diagnosing the underlying medical condition, which may require blood tests, X-rays, MRIs, CTs, a nerve conduction study, or a muscle and/or nerve biopsy to find out what could be causing muscle atrophy if it’s not readily apparently (as it would be if you’d suddenly become bedbound).

Can Muscle Atrophy Be Reversed?

Depending on the cause, yes. There are some cases where a proper diet, exercise, and physical therapy can not only reverse muscle atrophy, but also prevent it from recurring. However, this will not be the case in some disease-related forms of atrophy, and it is important that you consult your doctor on what your expectations for muscle atrophy recovery should be in restimulating protein synthesis and rebuilding your muscles.

Muscle Atrophy: Treatment

Again, this will depend on the diagnosis of the cause, and also the severity of your muscle loss, but the treatments for reversible muscle atrophy may be as follows.

  • Physical therapy
  • Exercise
  • Ultrasound therapy
  • Dietary changes
  • Surgery
  • Electrical stimulation

If a lack of movement caused this condition, regaining movement will go a long way towards fixing it, and moderate exercise like walking, along with physical therapy, may be a way to regain muscle strength without needing surgery to fix skin, tendons, or ligaments too tight to begin moving again (as in cases of contracture deformity that could be caused by malnutrition or burn injury scar tissue).

Muscle Atrophy: Prevention

There are ways to prevent muscle atrophy before it happens, and ways to guard against it if you were fortunate enough to recover your musculature after one instance of muscle loss. If preventing muscle atrophy is in your control (and, of course, sometimes it will not be), here are a few ways to maintain muscle strength in adverse circumstances.

Stay Active

If you’re in recovery from a severe illness or have just come home from the hospital after a debilitating accident, it’s not as if you’ll take up jogging right away. However, movements as small as walking to your mailbox each day, or around the block, or up and down a single flight of stairs, can truly make the difference in the long run when it comes to maintaining your mobility.

Stay Nourished

Depending on your condition, this may be difficult, but when your body lacks the proper nutrition to stay running, it will start to catabolize your muscles for its needs, which is a form of self-cannibalization or destructive metabolism that literally eats away at your muscles. Make sure you’re getting proper protein, if not from whole foods, then in the forms of protein shakes or supplements, as every little bit may help.

In fact, supplementing with amino acids has been proven to help accelerate muscle recovery in times of sickness and illness and can help boost your muscle-building gains. To learn more about amino acid therapy for muscle atrophy, give this informative article, written by one of the world’s foremost amino acid researchers, a read.

Seek Physical Therapy

Physical therapy is particularly valuable for those with severe injury recovery (such as a car crash survivor) or a neurological condition, as therapists provide professional guidance on what, and how, and how often to stretch your body to build strength.

Try Passive Movement

Another way physical therapy can help you even before you have the strength to help yourself is with passive movement. Passive movement requires the therapist to gently move your legs and arms for you. This is how you can begin to recover from a very deep muscle deficit and build up strength and muscle again.

Preventative Measures

Not only will the above advice help prevent muscle atrophy, but it can also help discourage bedsores in those who are bedridden due to illness, and reduce the chances of developing dangerous blood clots in the limbs. Likewise, these movements may prevent muscle stiffness, retraction, and nerve damage. Consult a medical professional or licensed physical therapist for more advice.

Eliminate Atrophy

If you are in danger of muscle atrophy, take steps to make sure your protein intake and nutrients are sufficient, including the use of a supplement if necessary, like Amino Co.’s essential amino acid supplement, which contains all of the essential aminos required to build new muscle cells and structures. Also, make sure that you stay active, no matter in how small a way, to preserve your muscle function and prevent your muscles from falling into complete disuse. You cannot always control your body’s condition, but if the type of atrophy you fear is the type that’s preventable, it’s well worth the effort to maintain the quality of life and movement you’ve come to expect.

When Is the Best Time to Take Protein?

The best time to take protein supplements depends on your activity level, your personal goals, and the types of workouts you engage in. This article will provide you with specific, scientifically backed recommendations, and the reasoning behind that advice.

When taking protein supplements, people often wonder when exactly is the best time of day to consume them. Pre-workout? Post-workout? Is it okay to drink a protein shake before bed? Protein supplements can help people lose weight, build muscle, and recover from tissue damage due to injury or surgery. Because they’re so effective, most people want to be sure they’re utilizing protein the right way. So when is the best time to take protein? Short answer is: that depends on your health goals and the kinds of workouts you’re doing. For the longer answer and more detail, read on.

The Different Types of Protein Supplements

Protein is a source of energy for the body, essential for muscle growth, repairing damaged tissue, and preventing certain infections and diseases. Normal dietary protein comes from foods like meats, eggs, fish, dairy, grains, legumes, and seeds. Though animal products contain the most amount of protein, vegetables are sources of protein too, a fact well-known by those living a vegetarian or vegan lifestyle. Of the most popular protein powders on the market in fact, a significant portion are plant-based.

Plant-based proteins include:

  • Soy protein containing all nine essential amino acids.
  • Rice protein, which is lower in the essential amino acid lysine.
  • Pea protein, which has lower levels of the essential amino acid methionine and nonessential amino acid cysteine.
  • Hemp protein, which is low in lysine but high in fiber, and omega-3 and omega-6 fatty acids, both of which are essential, meaning your body can’t make them on its own, and needs to gain them from the foods you eat.

Dairy-based proteins include:

  • Whey protein, which is absorbed relatively quickly and contains all nine essential amino acids.
  • Casein protein from milk curds, also containing the essential amino acids, and with a slower digestion rate than whey (which is why people often take casein before they sleep, so it will digest throughout the night… more on that timing below).

Animal-based proteins include:

  • Egg protein powder made from pure egg white protein.
  • Creatine, which is not found in plants but can be synthetically created. Though it is an animal protein, depending on its origin source, it may nevertheless be possible for vegans to use creatine as a supplement.

These are among the most commonly known protein powders available to buy, but we here at the Amino Co. have also developed an essential amino acid (EAA) blend that isn’t lacking or low on any of the amino acids required for protein synthesis and new muscle growth. It also blends free-form amino acids with whey protein and creatine, a nonessential protein that nevertheless has great value as a supplement. These forms of protein are used to help those who want to build muscle rapidly, and can even benefit those with muscle, neurological, or neuromuscular diseases.

The Varied Uses of Protein Supplementation

From muscle building to weight loss, here’s a quick look at all that supplemental protein can do to benefit your body.

Exercise Performance and Recovery

Added protein has been shown to increase endurance during training and workouts, as well as reduce soreness and speed up post-workout recovery. The timing of your protein intake matters here, whether you’re eating high-protein foods or taking supplements. Read on to learn about workout-specific timing recommendations.

Muscle Building

Muscles can only be built when you have the proper amount of amino acids for protein synthesis, and when you’re consuming more protein than your body breaks down during workouts. Taking a protein supplement, especially one that contains all the necessary EAAs for muscle growth, can make a huge difference. Finding the right anabolic window, the period of time when the protein you take in will go directly to your muscles, is something the International Society of Sports Nutrition has done extensive research on, and we, too, will provide specific scientific reasoning below.

Muscle Loss Prevention

Muscle mass is lost not only during intensive workouts, but also naturally as we age. Each decade you live after the age of 30 brings with it a higher risk of losing muscle (anywhere between 3-8% per decade). Proper protein intake is not only valuable to athletes, bodybuilders, and anyone who works out regularly, but it’s also important for each and every one of us as we age. Most Americans reserve their protein more for dinner than breakfast (3 times the amount on average is the difference between the two meals), and could use a supplemental boost of protein first thing in the morning to shore up their protein stores and help prevent the loss of muscle mass due to aging.

Fat Loss Facilitation

Protein is filling enough to help curb hunger pangs and chemically contributes to appetite suppression by reducing the “hunger hormone” ghrelin. A high-protein diet raises your metabolism and increases levels of appetite-reducing hormones like peptide YY (PYY) and glucagon-like peptide-1 (GLP-1). More satiety means fewer calories consumed throughout the day, which quickly leads to safe, maintainable weight loss and the reduction of dangerous body fat.

The Enduring Power of Protein

Popular because they’re convenient and effective, protein powders and supplements are here to stay and can offer you a wide variety of options, from self-mix formulas and powders to ready-to-drink protein shakes. If you’ve got your preferred protein supplement ready to go, then it’s time to wonder: when should you drink protein?

The Best Time to Take Protein Depending on Your Workout

Depending on your goals and activities, there are recommended times to take protein for the greatest effectiveness for your energy levels and muscle-building needs. Here are specific recommendations based on different types of workout activity.

The best time to take protein supplements.

Aerobic/Cardiovascular Exercise

Best time to take protein: Pre-workout and post-workout

The amino acid leucine is one of the three branched-chain amino acids (BCAAs), and it promotes muscle recovery after workouts. Not only that, it activates protein synthesis, prompting new muscle to be built. One might think that due to leucine’s ability to boost endurance and stamina, one should take a BCAA supplement before a workout, but the science contradicts that idea. Not only are BCAAs only three of the nine essential amino acids needed to construct new muscle, leucine and the other BCAAs (isoleucine and valine) experience oxidative degradation during aerobic activity.

BCAAs are Insufficient Pre-Workout

Adding these limited amino acids before your workout, especially in the unbalanced form of BCAAs instead of a complete EAA formula, means that a greater percentage will be oxidized and used for energy instead of muscle building. Your body does not want to be out of balance, so a sudden overabundance of a few amino acids will cause the body to clean up and reduce them in order to maintain equilibrium.

Rather than risk burning off the protein you put in because your body is only looking for energy sources, it’s better to take a full measure of EAAs within the hour after your aerobic workout, when your body is looking for supplies to rebuild. Leucine will be there to prompt muscle protein synthesis, and the rest of the essential amino acids will all be included in the ideal ratio for generating new muscle growth.

EAAs are Effective Pre- and Post-Workout

That being said, taking a complete amino acid protein supplement before an aerobic cardiovascular workout (like a high-intensity interval training or HIIT class), not only provides the necessary ingredients for muscle building, but also helps fight fatigue in a way that only taking BCAAs can’t, by fueling your body with the amino acids that help produce dopamine and serotonin in the brain.

Whether you’re walking, cycling, running stairs, or jumping rope, start by taking your EAA supplement 30 minutes before your workout session. The biggest benefit comes when you take your EAA supplement within an hour after your workout, when your blood flow is strong and active. Not only will the amino acids rush in to replace damaged muscle fibers with new muscle, EAAs can also help calm unnecessary inflammation. That will help quicken your recovery, allowing you to feel only the good side effects of working out, like increased energy and light euphoria, instead of soreness and fatigue.

Resistance Exercise

Best time to take protein: Pre-workout, during, and post-workout

Research has shown that EAAs given 30 minutes before a resistance exercise workout prompt muscle protein synthesis much more effectively than consuming EAAs afterwards does. Taking a protein supplement before this type of workout helps prevent the breakdown of muscle protein during the activity, and also increases blood flow to the muscles, thus getting the amino acids quickly into the muscle where they’re needed.

Consuming EAAs after a resistance workout is not harmful by any means, as that method, too, will prompt the stimulation of muscle protein synthesis, but it’s not ideal to leave the consumption of EAAs until after your resistance training is complete. Our recommendation is to first and foremost take a complete protein supplement before a resistance workout, and if possible take them throughout and/or after as well to get the most benefit.

Bodybuilding

Best time to take protein: Pre- and post-workout, and also before bed.

Immediately before and after a weight-lifting workout, we recommend that you take 15 grams of EAAs each. An EAA supplement has been shown to have a faster effect on muscle protein synthesis than either whey or casein protein alone. However, our Amino Co. blend of free-form EAAs with whey and creatine support ensures that you get a fast dose of EAAs and that the EAAs from whey will digest more slowly as you work out, offering a steady supply to help prevent muscle breakdown. Creatine helps prevent catabolism by supplying faster energy than your body can naturally generate from muscle cell mitochondria. This means more energy for more reps, which ultimately means more work put in and more muscle gained.

An hour after your post-workout dose of EAAs, we recommend another 15-gram dose. On off days, continue taking these same doses, measured between meals instead of surrounding your workout. Lastly, it’s also recommended you take another 15-gram dose before bed to keep your muscles fed as you sleep and to help prevent muscle breakdown as much as possible. You work hard to gain your muscles, and we encourage you to protect those gains at every opportunity. Set your alarm to take one more dose around 4 am if you know you won’t have a problem falling back to sleep, that way your muscles never go hungry for fuel.

It should be noted here that bodybuilders aren’t the only ones who benefit from taking extra protein before bed. One study of 16 elderly men showed that those who consumed casein protein (which digests slowly) before bed had increased muscle growth over those who took a placebo, despite being less active individuals. When you’re sleeping, it’s the protein that counts, and not the activity.

Is There Any Downside to Taking Protein Supplements?

The majority of scientific studies into how our bodies process high amounts of protein show that you can safely consume plenty of protein without risk of harmful side effects. Unless your doctor advises against protein supplements or you have a known kidney issue like rhabdomyolysis, there is no need to worry about excessive protein intake; merely take your products as recommended and spread them throughout your day.

Timing Is Everything

At the end of the day, it’s true that people who work out need more protein, but even those with a less active lifestyle benefit from consuming extra protein for strength, for maintaining healthy weight levels, and for preventing the loss of muscle mass we all experience as we age.

Make a protein shake for breakfast, have another to curb your appetite between meals, and make another as a beneficial treat before bed. Know that the more regularly you take in balanced forms of protein like Amino Co.’s complete EAA blend, the more good you can do for your body. Whether you’re working out or not, upping your daily protein intake is safe and smart. Bulk up, slim down, and stay strong with protein!

BCAA vs. Creatine: What You Need to Know

BCAA vs. creatine: a comprehensive look to help you decide which you should choose, or whether you’d rather utilize a product that combines the two supplements for better energy, muscle strength, and protein synthesis.

If you spend enough time in the gym, you will eventually run across this question: BCAA vs. creatine, which supplement do you prefer? Before you can answer that question, you’ll need the information behind both BCAAs and creatine: what are they? What are the upsides and downsides to each? How can they help build muscle? Can they both be taken together? You’ll find the answers to all of those questions here, plus learn about the one ultimate supplement that perfectly marries the two together, so you never have to compromise for imbalance in your muscle-building nutrients.

BCAA vs. creatine: a comprehensive look.

What Is BCAA? What Is Creatine?

We’ll start with the definitions, and then move on to the differences between these two supplement options.

BCAA: Branched-Chain Amino Acids

A BCAA supplement is made up of branched-chain amino acids, specifically the three amino acids leucine, isoleucine, and valine. There are a total of nine essential amino acids, essential because you must eat or otherwise consume them to get them (other amino acids are produced in-house by your body). Leucine, valine, and isoleucine are essential amino acids.

“Branched-chain” refers to the molecular structure of these three specific amino acids. The chemical bonds branch off of the main structure.

Studies have shown that BCAAs help reduce muscle damage and soreness in post-workout recovery.

While it’s possible to get a sufficient amount of the BCAAs from your diet, for those who work out intensively, and/or for those on specific diets aimed to lose weight, it might be difficult to get the right amino acid balance, which is why some will chose a BCAA supplement in the hope that it will round out their nutrients. However, it should be noted here that muscle synthesis cannot take place without all nine essential amino acids, so a complete essential amino acid (EAA) supplement is preferable to a BCAA one—you cannot build muscle with only a third of the necessary ingredients.

To cut calories without having a negative impact on protein intake for muscle mass is important, and BCAAs are often taken to try to ensure there’s no interruption to protein synthesis while dieting. Even if weight loss isn’t your goal, the BCAAs gained from taking a complete EAA supplement might still help in that department by contributing to appetite control.

BCAAs have similar benefits to a whey protein shake, but with fewer calories. Moreover, the amino acid leucine is one of the two specifically ketogenic amino acids, another way that BCAA supplements contribute to fat loss (the ketogenic diet is all about burning off fat, and doing it both quickly and safely).

BCAA supplements are perhaps best suited for CrossFitters, bodybuilders, or rowers, but again, they are only a third of the essential amino acids, all of which are necessary for muscle building.

BCAA Quick Facts

  • BCAAs provide three of the nine essential amino acid building blocks of muscle tissue.
  • BCAAs help protect lean muscle and guard against muscle wasting.
  • BCAA supplements are a source of longer-term energy, and can help reduce exercise fatigue.
  • BCAAs help promote fat loss via appetite suppression and increased metabolism for burning calories.
  • BCAA supplements provide higher strength gains than whey protein does.
  • There are no harmful side effects reported from BCAA supplementation.

Creatine: The Energy Protein

Creatine is creatine monohydrate, the protein found in animal sources of meat like fish, poultry, pork, and red meat. Creatine contains two different amino acids, arginine and methionine, of which methionine is essential.

Unlike the weight-loss potential in BCAA supplements, taking creatine can lead to initial weight gain, as it causes some water retention in the muscles. Likewise, if you’re not drinking enough water while taking creatine, cramping can occur, meaning it’s more important than ever to stay hydrated while working out.

Researchers have stated that creatine might help lessen the effects of osteoarthritis, slowing the loss of bone mass as you age. Another unique benefit of creatine is its ability to deliver the rapid energy that is needed during fast muscle contractions (when sprinting, for example). That means creatine gives you longer endurance, which means more reps, which means more muscle growth. This is why creatine is best suggested for powerlifters or sprinters, and why it’s a part of our unique EAA blend (see below for further details).

Creatine Quick Facts

  • Creatine breaks down into phosphocreatine (CP), which provides rapid energy for muscle contractions.
  • Creatine causes the release of the anabolic hormone IGF-1, used in promoting muscle growth.
  • Creatine is a quick source of muscle energy, allowing for more reps.
  • Creatine use aids long-term bone strength for weight trainers.
  • Creatine increases strength during resistance training by up to 20%.
  • Some water retention and cramping is reported with the use of creatine, but the effects are short term.

BCAA vs. Creatine: Which Should You Use?

If you’re here to make a choice, now’s the time to review your fitness goals and how each of these products might influence them. Research suggests that BCAAs help to increase muscle mass for those doing resistance training. If your diet is low on protein intake, say if you’re vegetarian or vegan, BCAA supplements are a great way to promote muscle protein synthesis, but remember that they are also only a partial supply of the amino acids you need for muscle building.

Likewise, a study also showed that muscle strength increased up to 8% for those using a creatine supplement while resistance training. Creatine can provide rapid energy when the usual muscle cell energy supply of adenosine triphosphate (ATP) is slow to regenerate, and it goes a long way towards the kind of strength building and increase to muscular force that might be preferred by powerlifters.

Both supplements aid muscle recovery, both contain at least one essential amino acid, both help drive protein synthesis, both of them are good to take as pre-workout supplements for their benefits, and honestly, unless you have a specific reason to not take one of them, you may be thinking that you want to take both. Well good news for you then, because you can! In fact, we recommend that you do.

BCAA and Creatine Together

You may have noticed that there was no overlap between the amino acids from BCAA supplements and creatine supplements, which means taking both will not overdose you on any one amino acid. Rather than think of them as enemies in some competition for supplement supremacy, BCAAs and creatine can be two valuable players on the same team: your team. Nothing bad will happen to you if you combine them (they’re not baking soda and vinegar in a third grader’s science fair volcano or anything), and since they both aid sports performance, boost muscle building, help with fat loss, and ease muscle recovery, when taken together you may see improved results in all of those categories.

However, if you’re after a full roster of the essential amino acids, there are amino acid supplements that include all three BCAAs, plus the other muscle-building EAAs. Whether you’re looking into supplementation because you’re lifting weights or attempting to lose body fat or both, a protein powder with only partial, unbalanced amounts of amino acids just won’t do the trick.

A Complete EAA Blend

When it comes to muscle-building supplements, our blended EAA formula not only contains eight of the nine essential amino acids, including the BCAAs, but it also supplies them with the energy of creatine and the steady amino acid digestion that comes from whey protein supplements (derived from milk).

This supplement is scientifically proven to increase human muscle growth and can help prevent muscle breakdown in the elderly. It was also designed to contain the exact ratio of amino acids needed to build muscles without overtaxing your body with excessive or unnecessary amounts of any one.

When building muscle, you don’t want to show up with a partial supply of the building blocks of protein. Instead, you want a comprehensive EAA supplement that helps all the work you do weight training at the gym to pay off. Instead of a dose of BCAAs here or a dash of creatine there, we recommend you get the most out of all of the above with our combination of EAAs with creatine and whey protein support. If the question is BCAA vs. creatine, the real answer is the Amino Company’s blends: for balance, for building, for the best of both worlds and more.

Most Popular Supplements for Muscle Growth

Learn the chemistry behind the traditional top supplements for muscle growth, and find out about the newest and most comprehensive supplement that’s about to revolutionize muscle building.

If you’re looking for supplements for muscle growth, you’ve probably already noticed that it’s a pretty crowded field. Different proteins and combinations and timing strategies get discussed, and before you know it you feel like you need about half a degree in chemistry just to build muscle at the gym! We’re streamlining the relevant information on muscle-building supplements, their pros and cons, so you can decide on the best supplements for your own fitness goals. If you’re in a rush, skip to the end, because there’s a new supplemental option that combines the best muscle growth nutrients you’ve ever known, all in one complete, balanced formula that will best all the rest. Read through to learn about the ideal muscle-building combo, a powerful protein trinity.

The First Steps Towards Muscle Building

Getting the most out of your workout involves taking a few first steps before you can start targeting muscle gain specifically. The first steps after taking up regular exercise are:

While supplements are not mandatory to reach these goals, they can be excellent aids to quicken your progress and maximize your protein intake without bringing unpredictable calories to your diet. Next up we’ll discuss the top supplements for muscle growth that you can choose from when attempting to gain muscle mass, and reveal a cutting-edge, scientifically-backed newcomer to the muscle-building supplement world.

Traditional Top Supplements for Muscle Growth

Over and above eating well and lifting weights, here are some protein and muscle-building supplements you can use to augment your workout goals, some of them more effective than others.

Top supplements for muscle growth and bodybuilding.

Carnitine

Carnitine is the general term for a group of amino acid compounds that include L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine. Carnitine is a transporter that moves long-chain fatty acids into mitochondria, where they’re oxidized or burned for energy.

A popular supplement for fat-loss, carnitine can also aid muscle growth by increasing blood flow to muscles, lessening muscle soreness, and increasing nitric oxide production, all of which improve your post-workout recovery. The combination of these benefits makes carnitine a strong asset for energy-boosting while you’re building muscles through exercise, especially when utilized in pre-workout and post-workout shakes. Though it doesn’t directly contribute to muscle building, it does provide valuable energy assistance, and improves performance during endurance athletics.

Pros

  • Aids athletic endurance by providing energy transport.
  • Helps ease muscle soreness and improve post-workout recovery.

Cons

  • Does not directly increase muscle, but instead aids in workout energy.
  • Carnitine is only a peripheral aid to individuals working to build muscle via exercise.
  • Carnitine would need to be taken alongside direct protein or amino acid supplements to be most effective.

Whey Protein Powder

A milk protein derived from whey, which is the watery part of milk that separates from the curd, whey protein is an excellent supplement affecting protein synthesis. With a high level of branched-chain amino acids or BCAAs, and including some amount of all nine essential amino acids (EAAs), this protein supplement digests relatively quickly and can help with rapid muscle building.

Whey protein can help increase blood flow due to its content of peptides, and is regularly consumed by bodybuilders immediately after their training sessions (within the hour). When choosing a whey protein, it’s recommended that you find a powder containing whey protein hydrolysates, which are proteins broken down for faster digestion.

Pros

  • Whey protein is a complete protein, containing all nine essential amino acids.
  • Whey protein is high in the branched-chain amino acids (BCAAs).

Cons

  • While whey protein is a fast-absorbing whole protein, free-form amino acids can be absorbed much more quickly.
  • Whey protein’s amino acid content is not optimally balanced, and a properly formulated essential amino acid supplement can have 3 times the effectiveness rate as a whey protein powder supplement alone.

Glutamine

Glutamine is an amino acid that not only helps build muscles by increasing the levels of the essential amino acid leucine in muscle fibers, but it also helps fight against muscle breakdown, and has been shown to play a significant role in protein synthesis.

Incidentally, glutamine can also be recommended for those with digestion issues (diarrhea or constipation), anxiety, cravings for sugar and/or alcohol, and those with poor wound healing.

Pros

  • Valuable as a precursor to the essential amino acid leucine.

Cons

  • Glutamine aids only one of the nine essential amino acids needed for muscle building, and so is far from being the most effective muscle-building supplement.
  • Glutamine is unnecessary if you’re taking a complete blend of essential amino acids.

Casein Protein Powder

Casein is the other milk protein that is derived from the curd of the milk and not the whey. Casein has a slower digestion rate than whey protein does, which makes it an excellent protein to take before bed, as it digests while you sleep and helps to prevent catabolism (which is to say destructive metabolism, a kind of self-cannibalism the body sometimes resorts to for energy).

Because increased calorie intake is also needed to build muscle, casein can help by being less filling than whey, allowing you to consume more alongside it. However, it’s also suggested that taking a combination of whey (or better yet free-form essential amino acids…read on!) and casein after a workout can help with muscle protein synthesis better than taking either one of them alone. Be advised that a casein protein product with micellar casein is the slowest-digesting form of casein readily available, and is your best bet when buying it as a supplement.

Pros

  • Casein protein has a slower digestion rate than whey, which can help prevent catabolism during sleep.

Cons

  • Works best when combined with stronger protein supplements like whey protein or free-form essential amino acids.

Beta-Alanine and Carnosine

Beta-alanine, an amino acid and key component of the dipeptide carnosine, aids in increasing carnosine levels and thus heightening muscle strength and muscle endurance. Higher levels of carnosine also increase the force of muscle contractions, and combining it with creatine (next on the list) has the greatest effect on losing body fat and gaining lean tissue, as was seen when the two were studied during a 10-week resistance training program conducted with collegiate football players.

Pros

  • Carnosine contributes to muscle endurance, leading to more powerful workouts, which can then translate to increased muscle.

Cons

  • Carnosine does not directly build muscle, but instead helps aid in workout endurance.
  • Carnosine is most effective in combination with proteins like creatine or free-form amino acids, and so is best as peripheral support for muscle building.

Creatine

Popularized as a workout supplement in the 1970s, creatine is made up of three amino acids—glycine, arginine, and methionine—and is vital for supplying the energy for muscular contraction. Creatine can be found in the forms reatine alpha-ketoglutarate (AKG), creatine monohydrate, and creatine malate. Creatine has been shown to increase the levels of insulin-like growth factor-1 (IGF-1) in resistance-exercise training, which is essential for stimulating muscle growth.

Creatine is converted to phosphocreatine (CP) in the body, which then provides energy for explosive exertions like heavy weight lifting or sprinting. The creatine-phosphocreatine system provides an increase in energy supplied to muscle cells when your body is using more ATP (adenosine triphosphate) than is being regenerated in the cells’ mitochondria. This increases your athletic endurance.

Pros

  • Provides energy for increased exercise performance, especially when you’re using more ATP than the mitochondria of your muscle cells can regenerate.
  • Creatine helps stimulate muscle growth.

Cons

  • Creatine is not most effective when taken alone, but is instead at its best when paired with an essential amino acid (EAA) supplement, where it will help provide the energy needed for increased muscle protein synthesis.

Nitric Oxide Boosters (Arginine)

Nitric oxide (NO) in the body serves to dilate blood vessels, thus allowing better blood flow to muscles, providing them with energy, nutrients, water, anabolic hormones, and oxygen—everything your muscles need to function, grow, and thrive. Nitric oxide boosters do not contain nitric oxide, but instead provide it via the amino acid arginine, which the body converts into nitric oxide.

Arginine supplements are often marketed based on their association with muscle growth, increased muscle strength, and loss of bodyweight. However, we recommend supplementing with citrulline to increase arginine, as arginine supplements don’t produce significant increases in blood arginine concentrations due to the liver’s effectiveness at clearing absorbed arginine. Citrulline, on the other hand, is converted into arginine by the kidneys, and the arginine is then released into the bloodstream; this more effectively increases your arginine levels. Additionally, there are no adverse effects associated with citrulline supplementation, while arginine consumption can sometimes lead to gastrointestinal discomfort.

Pros

  • Arginine in the bloodstream leads to more readily available amounts of nitric oxide, essential for muscle functioning.

Cons

  • Counterintuitively, arginine supplements are often ineffective at supplying useable arginine to the bloodstream.
  • Instead citrulline is recommended to supplement for an effective increase in arginine, and can be taken alongside or included in EAA and protein supplements for optimal muscle performance.

ZMA (Zinc, Magnesium Aspartate, Vitamin B6)

Supplementing the minerals zinc and magnesium aspartate along with vitamin B6 is sometimes important to bodybuilders because they become depleted during intense training and need to be specifically replaced. These nutrients are necessary for maintaining proper sleep and hormone levels, as testosterone particularly can be compromised by intensive training.

Athletes who take ZMA have been shown to have increased levels of IGF-1 and testosterone, both of which have an influence on muscle gains. ZMA is recommended to be taken before bed on an empty stomach, to allow for better uptake and to help improve sleep quality and the muscle recovery that sleep provides.

Pros

  • Can help correct vitamin and mineral deficiency caused by intensive weight training.

Cons

  • ZMA supplementation does not lead to direct muscle growth, but can be taken as needed alongside free-form amino acids or traditional protein contributions like whey or creatine, depending on your workout style and your body’s needs.
  • Not everyone will need the extra supplementation of ZMA.

HMB (Beta-hydroxy beta-methylbutyrate)

Beta-hydroxy beta-methylbutyrate or HMB is a molecule derived from the processing of the essential amino acid leucine, and helps protect against muscle protein breakdown. HMB is often recommended only for those who are beginning weight-training exercises, as the scientific results seen in those who are more experienced with muscle training are less significant. This is due to the fact that HMB is heavily reliant on a steady and abundant supply of EAAs to be effective. When the EAA supply dips down, so does the effectiveness of HMB; it cannot work alone.

Pros

  • HMB supplementation can be good for resisting extreme catabolic states, such as in individuals with critical wasting illnesses.

Cons

  • HMB without an excess supply of EAAs is only marginally effective.
  • EAA supplementation is also needed to derive maximum benefits from HMB supplementation.

Branched-Chain Amino Acids (BCAAs)

The branched-chain amino acids are a subcategory of essential amino acids, and are designated by the molecular structure of leucine, isoleucine, and valine. BCAAs make up 14% of the amino acids that reside in your muscles, and it’s been shown that taking a supplement of BCAAs during resistance-training exercise increases muscle strength, fat loss, and lean mass.

However, while research shows that leucine in particular stimulates muscle protein synthesis, and that together these three amino acids diminish cortisol (a catabolic hormone), increase energy, and reduce delayed-onset muscle soreness, BCAAs when consumed alone are not fully effective. All nine essential amino acids are needed to make new muscle, and in fact, the the rate of muscle protein synthesis is directly affected by the availability of all your essential amino acids—the more you have, the faster your rate of muscle synthesis, and the fewer you have, the slower the rate. Because of this, research actually shows that BCAAs when taken alone have little to no effect on the rate of muscle protein synthesis in humans.

Pros

  • BCAAs are valuable amino acids that can be taken to help some aspects of muscle building.

Cons

  • BCAAs are only three of the nine essential amino acids, and all essentials are needed to create new muscle.
  • BCAAs have little to no effect on muscle protein synthesis when taken alone.

An Essential Amino Acid (EAA) Blend: The New Top Muscle Growth Supplement

If BCAAs ever sounded good, you’ll probably be more interested in a complete EAA supplement. Our unique EAA supplement is an ideally proportioned blend that combines the strengths of whey protein, creatine, and the eight essential amino acids that contribute directly to muscle growth. With our EAA blend, you’ll not only get the BCAAs mentioned above, but also a full cocktail essential amino acid supplement. It contains the key factors that make whey protein and creatine effective too, giving you the best of every top effective traditional supplement on the market.

EAAs and Muscle Protein Synthesis

The human body is made up of about 20% protein, and amino acids are used to form our muscles, tissues, and organs (not to mention the hormones needed for cognitive and physiological function). The key to our muscle-building product that helps make it more effective than other supplements, and even some dietary sources of essential amino acids, is its absorption rate and digestibility.

The EAAs derived from dietary proteins have to be digested first and then absorbed, while free-form amino acids are absorbed more quickly and completely. With eight of the nine essential amino acids (minus tryptophan which is not necessary to supplement for muscle protein synthesis), the amounts of EAAs are maximized more than any naturally occurring protein can deliver.

EAAs with Whey Protein’s Support

While free-form EAAs provide faster absorption, an intact protein like whey provides for a longer absorption period, sustaining the supply of EAAs after the rapid absorption of the free-form EAAs. Designed to work in concert with one another, our muscle-growth supplement combines its EAA profile with a balanced inclusion of whey protein for steady, ongoing support of muscle protein synthesis.

EAAs and Creatine’s Energy

Because creatine-phosphate provides the energy for sudden bursts of physical activity like lifting heavy weights or sprinting, it’s included in the Amino Co.’s technology to provide the energy needed to convert EAAs into muscle via muscle protein synthesis. Instead of waiting for the mitochondria of muscle cells to metabolize ATP for energy, creatine covers the time gap when needed, completing the full circle required for ideal muscle building: the rapid essential ingredients, the long-haul supply, and the energy to put them to use.

The Amino Company Advantage

Our product is a unique, patent-pending blend of essential amino acids, whey protein, and creatine that outperforms all other supplements in increasing muscle mass. Good for increasing strength in the elderly and easy to include in drinks or smoothies, Amino Co. supplements are scientifically proven to be effective in muscle protein synthesis over any other supplement, food, or protein choice currently available.

The ABCs of Muscle Growth

On a first glance at muscle growth supplements, it looks like an alphabet soup of vitamins and molecules and chemistry notes, but the more knowledgeable you become about your own body’s strengths and needs, the closer you’ll approach a PhD’s level of understanding when it comes to which supplements best support your goals. Effectiveness is key, bolstered by practical results that can be not only felt, but also scientifically proven. In the end, you can see which supplement brings you the greatest value.

The strongest performers from the traditional list of muscle growth supplements have been brought forward to the new frontier: an EAA blend that brings the best of everything essential to building and maintaining new muscle. The Amino Company provides the full circle of quick, long-lasting, and energized EAAs for muscle building. When you take our unique blend, you’re guaranteed to have an optimally balanced formula designed specifically for human muscle growth (and not lab animals). With the Amino Co. on your team, you can reach higher heights of strength faster and more effectively than ever before!

What Are the Best Muscle Recovery Foods?

Wondering what muscle recovery foods are good for prevention and relief of delayed onset muscle soreness? This comprehensive list of foods full of healthy fats, amino acids, and natural sugars will support your workout and recovery goals.

After starting a new workout, you’re in for some growing pains. Delayed onset muscle soreness or DOMS can affect anyone, from those new to working out to elite athletes incorporating different exercises into their routines. Whenever you push your muscles, either with unfamiliar exercises or longer durations, you’re creating microscopic tears to the muscles, which then cause stiffness, soreness, and pain. Are sore muscles a good sign? Yes, in a sense, because it means you’re using your muscles in new ways that will eventually lead to a better fitness profile. But don’t fret! Eating muscle recovery foods can help ease the discomfort and may even help decrease muscle soreness in the first place.

Using food as your method of recovery and prevention may truly be the best road to take. The other suggestions to help muscle recovery either take extra time or come with other risks, and none of them can get in front of DOMS before it starts. Getting a massage after every workout would be great, but do you have the time, the money? Rest and ice packs are perfectly reasonable options too, but it’s the rest that might bother you if you’re really excited about a new workout and seeing results. Do you really want to take a couple of days off after every workout to let your muscles recover? It might not be a bad idea, but with the right foods pre- and post-workout, it might not be necessary either.

The last refuge to treat the ache and pain of muscle soreness is to use painkillers. Whether it’s over the counter fare you’d take for any pains (a wincing headache for example, or to relieve menstrual cramps), or prescription painkillers meant for more serious pains (a wrenched back or dental surgery). And these pain killers come with health-compromising side effects that are best avoided.

So what can you eat that will make a difference? Here are some foods you might want to include on the menu on gym days.

 Muscle recovery foods for prevention and relief.

Muscle Recovery Foods

Whether for their protein content, iron content, anti-inflammatory properties, or amino acids, these foods can help your muscles heal faster.

Cottage Cheese

Cottage cheese has around 27 grams of protein per cup, and is often a regular food in the fitness community for those without any dietary restrictions surrounding milk products. In fact, the casein protein found in cottage cheese curds (as opposed to the whey protein found in watery milk) are often isolated and used as a workout protein supplement. As a slow-digesting protein, casein can help build and rebuild muscle while you sleep if it’s your last snack before bed.

The essential amino acid leucine is also present in cottage cheese, and comprises around 23% of the essential amino acids in muscle protein (the most abundant percentage of them all). Foods with leucine can help you build muscle by activating protein synthesis, and the faster you rebuild your muscle, the faster your muscle repair and workout recovery!

Eat it plain, or combine cottage cheese with some of the other recovery foods on this list to stack the benefits. Cottage cheese can even be used in baked goods and pancakes or included in protein shakes—don’t be afraid to get creative.

Sweet Potatoes

Adding sweet potatoes to your post-workout meal can help replenish your glycogen stores after a tough workout. Sweet potatoes are a great source of vitamin C and beta-carotene as well, and are loaded with fiber which helps to control appetite and maintain healthy digestion and build muscle.

Sweet potatoes can be baked whole in the oven or on a grill, cut into fries, spiced with cinnamon, or made savory with garlic powder and pepper. Enjoy them at the dinner table or on the go: a baked potato wrapped in foil can join you just about anywhere.

Baking Spices

Speaking of what you can put on sweet potatoes, it turns out some baking spices are good for post-workout recovery as well. Not so much in the form of gingerbread cookies or cinnamon rolls, but a study showed that cinnamon or ginger given to 60 trained young women (between the ages of 13 and 25) significantly reduced their muscle soreness post-exercise. If you’re already having a sweet potato, make it a little sweeter with some cinnamon, add it to oatmeal, or put some in your coffee for the extra boost.

Coffee

Did we just mention coffee? Good news: coffee’s on the list too. Research suggests that about 2 cups of caffeinated coffee can reduce post-workout pain by 48%, and another study showed that pairing caffeine with painkilling pharmaceuticals resulted in a 40% reduction of the drugs taken. If you do need pharmaceutical pain relief, maybe coffee can help you minimize just how much you take—caffeine is a much less dangerous stimulant than pain pills.

Turmeric

Another spice on the list, turmeric contains the compound curcumin, which is an anti-inflammatory and an antioxidant, and has been shown to be a proven and reliable pain reliever. Whether it’s helping you with delayed onset muscle soreness or pain from an injury (workout-related or otherwise), turmeric eases both pain and swelling by blocking chemical pain messengers and pro-inflammatory enzymes.

As with the other spices, it can be easily added to baked goods, to coffee, and to oatmeal. With its beautiful golden color, you can even make what’s called “golden milk” or a turmeric latte by combining 2 cups of warm cow’s or almond milk with 1 teaspoon of turmeric and another teaspoon of ginger, and then sip your muscle soreness away.

Oatmeal

Speaking of oatmeal (and isn’t it nice that so many of these ingredients can be easily combined?), it, too, can help relieve muscle soreness. This complex carb gives you a slow and steady release of sugar, along with iron needed to carry oxygen through your blood, and vitamin B1 (thiamin), which can reduce stress and improve alertness. This is why oatmeal is a great way to start the day, but since it also includes selenium, a mineral that protects cells from free-radical damage and lowers the potential for joint inflammation, it’s a great food for those in high-intensity workout training as well (like, up to Olympic level training).

Use oatmeal as a daily vehicle for other healthy ingredients, including the spices on this list, and enjoy its reliable benefits.

Bananas

Easily sliced into oatmeal, included in smoothies, or eaten alone, not only are bananas a healthy way to replace sweets (frozen and blended they can even make a delicious ice cream alternative), bananas are also a great way to get much-needed potassium. Research suggests potassium helps reduce muscle soreness and muscle cramps like the dreaded “Charley horse” spasm that contracts your muscle against your will and might not let up until it causes enough damage to last for days. A banana a day could keep the Charley horse away, and is particularly delicious (and helpful) when paired with its classic mate: peanut butter.

Peanut Butter

The healthy fats and protein found in nut butters like peanut or almond butter can help repair sore muscles. A reliable source of protein for muscle building, with fiber for blood pressure aid, vitamin E for antioxidant properties, and phytosterols for heart health, peanut butter offers up a ton of benefit and is easy to eat anywhere. Make a sandwich, use it to help bind together portable protein balls filled with other ingredients, add it into smoothies, or just eat it from the jar with a spoon (no one’s judging).

Nuts and Seeds

If you’re a fan of protein balls, then you’re well acquainted with nuts and seeds, which are great additions to these protein-rich foods. While providing essential omega-3 fatty acids to fight inflammation, various nuts and seeds can provide you protein for muscle protein synthesis, electrolytes for hydration, and zinc for an immune system boost. Something as simple as a baggie full of almonds, walnuts, pumpkin, and cashews can help maximize your muscles. Mixing in seeds (sunflower, chia, pumpkin) adds a healthy density that can curb your hunger and satisfy your appetite for longer. They’re small but powerful assets in quick muscle recovery.

Manuka Honey

This is not your grocery store honey in its little bear- or hive-shaped bottle. Manuka honey comes from the Manuka bush in New Zealand, with a milder flavor than that of bee honey and a much thicker texture. It’s anti-inflammatory and rich in the carbs needed to replenish glycogen stores and deliver protein to your muscles. Drizzle it over yogurt or stir it into tea to gain its benefits.

Green Tea

Green tea is particularly helpful for muscle recovery purposes. With anti-inflammatory antioxidants, it makes an excellent pre- or post-workout drink to prevent muscle damage related to exercise, and also helps you stay hydrated.

Cacao

Cacao has high levels of magnesium, antioxidants, and B-vitamins, which reduce exercise stress, balance electrolytes, and boost immunity and energy levels. The antioxidant flavanols in cacao also help up the production of nitric oxide in your body, which allows your blood vessel walls to relax, lowering blood pressure and promoting healthy blood flow. Adding cacao powder to your high-quality protein shakes or a glass of cow/almond/coconut milk post-workout will bring you its benefits.

Tart Cherries

Tart cherry juice has been shown to minimize post-run muscle pain, reduce muscle damage, and improve recovery time in professional athletes like lifters, according to the Journal of the International Society of Sports Nutrition. Enjoy tart cherry juice as a drink, or include the dried fruit as a part of your own muscle-building trail mix with the nuts and seeds discussed above. It’s not the only fruit or fruit juice you might include either. The nutrients in fruits like oranges, pineapples, and raspberries can also help speed up your recovery.

Salmon

Rich with anti-inflammatory omega-3 fats, muscle-building protein, and antioxidants, salmon is an extremely efficient post-workout food. Not an option if you are vegan or vegetarian, of course, but for the meat eaters among us, or those on the Paleo diet, salmon can specifically help prevent delayed onset muscle soreness, reduce inflammation, and provide you with an abundance of the protein needed for muscle growth. Eat this protein within 45 minutes after working out for maximum effect, either grilled, cooked up in salmon cakes, or raw in the form of sushi or sashimi. All of the above goes for tuna as well, by the way—reasons you might become a pescatarian.

Eggs

If you are an omnivore or ovo-vegetarian, eggs are great way to gain protein first thing in the morning, and an even more effective food to have immediately post-workout to help prevent DOMS. Like cottage cheese, eggs are a rich provider of leucine, and like salmon, eggs contain vitamin D (in their yolks). For your convenience, eggs can be boiled and brought along for immediate consumption after your training. Boil a dozen at the start of each week during your meal prep, and have an easy protein source in the palm of your hand every other day of the week.

Spinach

Did we really get all the way to the end of the list without a vegetable? So sorry! Let’s fix that with spinach. A powerhouse of antioxidants, not only can spinach help prevent diseases like heart disease and various cancers, but it also helps you recover quickly from intense exercise. Spinach’s nitrates help to strengthen your muscles, and its magnesium content helps maintain nerve function. Spinach helps to regulate your blood sugar (in case you worry about the spikes you might get from the sweeter items on this list), and can be added to many dinners, snuck into smoothies, or eaten on its own either raw or sautéed in olive oil.

Resist Damage and Recovery Quickly

These foods help with recovery from DOMS and reduce the amount of soreness you get in the first place by providing your body with the proteins and nutrients it craves when you’re working out to the best of your ability.

A quick note before you go. In your quest for pain-free muscles, you’ll want to avoid:

  • Refined sugar: Just one sugary soda a day can increase your inflammatory markers, as can white bread and other products with refined sugar. Natural sugars don’t bring that kind of adverse effect, so get your sugar from whole foods instead.
  • Alcohol: The dehydration caused by alcohol requires its own special recovery, and will deplete many of your vitamins (especially B vitamins). Some research suggests that alcohol can interfere with how your body breaks down lactic acid, which would increase muscle soreness. If you’re on a mission to build muscle, it’s best to avoid alcohol.

If you’re eating pretty well and avoiding what you shouldn’t eat, but still find muscle soreness a burden after working out, there is always the option to supplement.

What is the best supplement for muscle recovery? Evidence shows that getting all your body’s essential amino acids in balance will help specifically with muscle sprains and pulls, so when supplementing, just make sure you cover the waterfront (rather than choosing one or two essentials and neglecting the rest). Other than that, a diverse diet can be had in choosing natural preventions and remedies for healthy muscle recovery.

How Amino Acids Support Female Muscle Growth

Is it truly more challenging for women to build muscle? To answer that question, we first separate the myths about gender differences and muscle growth from the actual science. Then, we offer tips everyone can use to get serious muscle growth results.

Female muscle growth. It’s not a phrase you hear too often. However, whether you’re a man or a woman, muscle building benefits your overall health and well-being. Strong scientific evidence shows that increasing your lean muscle mass can help you stay healthy as you age, support fat loss by keeping your metabolism running at full capacity and prevent the development of chronic diseases.

If you’re born male, you’re coached from a young age to want to grow up to be big and strong. But if you’re born female, you receive the opposite message. With the emergence of ripped and toned female fitness influencers taking social media by storm, the tides appear to be shifting. Nonetheless, society still tends to instruct girls to train themselves to be as dainty as possible—in part, so they can grow up to be women who attract big, strong men.

But the health benefits of muscle mass apply to everyone, regardless of gender. However, it can be more challenging for women to build muscle for a variety of reasons.

In this article, we’ll explore the scientific realities behind the common belief that muscle building comes more naturally to men than to women. Plus, we’ll offer tips that everyone can use to increase their physical strength and get serious muscle growth results.

Do Men Build Muscle More Easily Than Women?

If you’re at all familiar with the resources out there for people interested in muscle building, you’ve probably noticed that the vast majority of it is written by male authors for male audiences. While that has begun to shift somewhat as more women get into powerlifting, bodybuilding, and sports science, these realms are still dominated by men.

In those realms, a concept that many take for granted is that muscle gains come more easily for men than for women. This concept is propped up by claims that men and women have significant physiological differences that give men an advantage when it comes to physical strength and performance.

 

How amino acids can maximize female muscle growth.

What Science Tells Us About the Differences Between Men and Women

Let’s begin by comparing the average metabolic rates—the calories you burn just by going about your day—for men and women. According to a study published in the American Journal of Clinical Nutrition, about 90% of the variations researchers identified in the baseline number of calories participants expended over a 24-hour period came down to differences in fat mass and muscle mass. Your age has a measurable impact too. Researchers found that participants between 50 and 65 years of age had baseline metabolic rates that were 4.6% lower than participants between the ages of 20 and 30.

Fascinatingly, they reported: “No sex difference in any energy expenditure measurement could be found.” However, women do tend to have slower metabolisms than men, but it’s not because they’re women, it’s because on average, women are smaller and have less muscle mass.

So, let’s look into muscle mass differences. Findings published in the Journal of Applied Physiology reveal that women have, on average, about 67% of the muscle mass men do.

Women lag further behind when it comes to the muscle groups of the upper body than those of the lower body. A research team from the departments of Physical Education and Medicine at McMaster University in Hamilton, Canada set out to determine how gender differences influence strength and muscle fiber characteristics. They found that female participants had approximately 52% of the upper body strength and 66% of the lower body strength of men.

These differences appear to have more to do with the likelihood that men will have larger muscles than with innate sex-based differences, though. A study published in Ergonomics sought to measure the extent to which differences in strength between men and women can be explained by muscle size. Researchers found that when they adjusted their findings to take into account overall muscle mass as well as the size of specific muscle groups, 97% of sex-related differences were in strength. The researchers state that their findings suggest muscle size “almost entirely” accounts for the differences we expect to see between a man’s physical strength and a woman’s. In other words, if a man and woman have comparable muscle mass, they should be equally strong.

It appears that the vast majority of the differences we attribute to sex actually have to do with body composition. A woman and man with similar previous experience in terms of physical activity and comparative amounts of muscle and fat will perform similarly on standard measures of strength.

However, there are some differences between the ways men’s bodies and women’s bodies tend to respond to strength-training regimens and individual workout plans.

How Hormones Affect Female Muscle Growth

Hormones tend to be the first factor people point to when talking about physiological differences between women and men. It’s only logical, given that men’s increased muscle mass results from higher testosterone levels. Hormone levels fluctuate from person to person and over time, but on average, women produce far less testosterone than men do—between 15 and 20 times less, according to data sourced from the U.S. National Library of Medicine.

However, the question of testosterone levels isn’t as clear cut as we tend to think. In fact, some men have lower testosterone levels than some women do. After a team of researchers from the U.K. analyzed the hormone levels of elite athletes, they found significant overlap between testosterone levels for male competitors and female competitors. It’s worth noting that the hormone profiles of elite athletes differ from those of average individuals. It’s also highly likely that women with naturally higher levels of testosterone are more likely to excel at the elite level in certain physical disciplines. The main takeaway is that the idea that men have higher testosterone levels and therefore build new muscle more easily doesn’t entirely hold up.

Furthermore, did you know that testosterone is not the only hormone involved in building muscle mass? Estrogen, which as you may know, women typically produce at higher levels than men do, has also been shown to have significant benefits for muscle growth.

Studies done with animal subjects and well-controlled studies with human subjects support the idea that estrogen can help to prevent the breakdown of muscle tissue that often accompanies the aging process. It appears that estrogen has an overall positive impact when it comes to maintaining and increasing your lean muscle mass.

And an article published in Exercise and Sport Sciences Reviews presented experimental findings suggesting that estrogen may have an anabolic effect on muscles, meaning it supports muscle gain. It appears to do this primarily by lowering protein turnover, which slows the rate of catabolism (muscle breakdown), and enhancing the sensitivity of muscle tissue to resistance training.

Estrogen also boosts your metabolism, making it easier to cut your body fat percentage. While that doesn’t directly contribute to muscle growth, it does mean the new muscles you build will be more visible.

Women and Men Build Different Types of Muscles

We all have two general types of skeletal muscle fibers: slow-twitch, or Type 1, and fast-twitch, or Type 2. Type 1 muscles help power you through feats of endurance, like marathons. And the more Type 2 muscles you have, the better you perform on tests of explosive strength, like Olympic weight training.

There’s a clear divide between the average percentages of Type 1 and Type 2 muscle fibers that women and men typically have. According to Greg Nuckols, an experienced fitness writer who holds a BS in Exercise and Sports Science and three all-time world records for powerlifting, women typically have more Type 1 muscle fibers than men do, about 27% to 35% more. Women also tend to have greater capillary density.

Both give women an advantage in many ways. Greater capillary density means an increased ability to circulate blood through your muscle tissue to bring in fresh oxygen and clear out waste products. And having a higher percentage of Type 1 muscle fibers gives you an improved capacity for glucose and fatty acid oxidation, which translates to a decreased risk of chronic conditions linked to metabolic health, like diabetes and heart disease.

However, Type 2 muscle fibers are thicker, quicker to contract, and engage when your body nears maximum exertion. If you’re looking to increase your muscle mass and build strength so you can lift heavier and heavier weights, you need to recruit your Type 2 muscles. There’s no evidence that Type 1 muscle fibers can be transformed into Type 2 muscle fibers (or vice versa), which means there may always be a gap between the level of explosive strength an experienced female weight lifter can generate and the amount a male lifter at the same level can generate.

Maximizing Muscle Growth as a Woman

While men may have some innate advantages when it comes to building muscle mass, studies show that both men and women gain muscle at the same rate when they commit to workout routines like resistance training, weight training, and high-intensity interval training (HIIT).

Researchers from the University of Maryland Exercise Science and Wellness Research Laboratories conducted a study in which participants committed to a 6-month, whole-body strength-training program that worked for all the major muscle groups in both the upper and lower bodies.

They used MRI images to assess thigh and quadriceps muscle volume as well as mid-thigh muscle cross-sectional area before and after the strength-training program. Their findings showed that the thigh and quadriceps muscle volume increased significantly for all age and gender groups as a result of the strength-training program. The researchers found no significant differences related to either participant age or gender.

In some cases, women can make more significant strength and muscle gains than men. A study published in the International Journal of Sports Medicine examined how men and women responded to weight-training and resistance-training approaches. The researchers found that after following the same short-term training program, female participants made more significant strength increases than male participants did.

For women interested in optimizing their body composition by decreasing their body fat percentages and increasing their muscle mass, there are certain strategies you can put in place to maximize your muscle-building potential.

Train Strategically

When it comes to building muscle, the first step is to institute a strength-training regimen. For those seeking to rapidly increase muscle growth who are comfortable and able to perform high-intensity workouts, the most effective strength-training approach will involve lifting increasingly heavy weights. That might mean using barbell, kettlebells, dumbbells, or other types of weights.

Incorporating weightlifting into your training sessions encourages muscle growth because of the strain it places on your muscles. This wear and tear breaks down the muscle tissues. Then, during the recovery process that takes place while you sleep and on rest days, your muscles rebuild themselves. Each time this process takes place, your muscles grow bigger and stronger.

Adding high-intensity interval training to your exercise routine can also increase your muscle gains. This method of training involves short burst of intense exertion—a great tactic for recruiting your Type 2 muscles.

Increase Your Protein Intake

As you know, your muscles are made up of proteins. In order for your muscles to successfully rebuild themselves after workouts, you need to provide them with an adequate supply of dietary protein.

There’s no one-size-fits-all answer to the question of how much protein your muscles need to properly build and repair themselves. Factors like age, weight, activity level, and training goals will all influence the amount of protein an individual needs to consume.

Federal guidelines set the minimum recommended amount of protein consumption for adults at 17% to 21% of your daily calories, and that’s without taking weight training into consideration.

As Jim White, RD, ACSM, explained, resistance training increases the process of protein turnover. By eating proteins laden with all the essential amino acids, you’re providing your body with the raw materials it needs to build muscle.

According to the American College of Sports Medicine, if you’re looking to build muscle mass, you should aim to consume between 0.5 and 0.8 grams of protein per pound of body weight. That means a 150-pound woman, for example, should set a protein intake target of 75-120 grams of protein each day. It’s also important to consider the percentage of your overall calorie intake that comes from protein.

White, as well as other experts, recommends prioritizing the post-workout window for protein consumption as this has the biggest impact on muscle growth. Findings published in the Journal of the International Society of Sports Nutrition indicate that protein consumption before workouts can also be a key factor. Eating protein both before and after workouts can boost your performance, speed your recovery time, and increase your lean muscle mass.

Amino Acids Can Boost Female Muscle Growth

While it’s entirely possible to meet your body’s protein needs through diet alone, it can be helpful to add in high-quality supplements, including protein powders. Especially if you have a busy schedule that makes it challenging to consume enough protein during meal or snack times, it can be highly beneficial to provide your body with amino acids from other sources.

Researchers have found that certain supplements can be particularly helpful when it comes to building and maintaining muscle mass. If you’re wondering about the best amino acids for muscle growth, here are three to consider.

How amino acids can maximize female muscle growth.

1. Creatine

Creatine, an amino acid compound found naturally in the human body as well as in foods like red meat, has been the subject of hundreds of studies. If you’re lifting weights and looking to amplify your results, you may want to consider supplementing with creatine.

Media reports may have lead you to believe that creatine supplementation can adversely impact the health of your kidneys, but scientists have repeatedly and conclusively found that not to be the case.

After going over all available data on the short-, medium-, and long-term effects of creatine supplementation, researchers from the Higher Institute of Physical Education and Readaptation in Brussels, Belgium found no evidence that creatine causes liver dysfunction in healthy individuals (individuals with pre-existing kidney disease should avoid creatine). The researchers concluded that individuals who take creatine “do not report any adverse effects, but body mass increases.” They also noted that creatine may benefit the health of your heart and help reduce your risk of neurological diseases.

Studies show that supplementing with creatine can increase your lean body mass, enhance your anaerobic working capacity, and minimize the muscle damage caused by extreme exertion.

2. Beta-Alanine

This naturally occurring amino acid has also been the subject of extensive research.

One reason for this is that beta-alanine is the rate-limiting precursor of carnosine, an amino acid found in high concentrations in human skeletal muscle. One study on the effects of beta-alanine supplementation found that it can increase concentrations of carnosine in your muscles, which in turn helps to prevent muscular fatigue.

A separate study published in the Journal of the International Society of Sports Nutrition found pairing beta-alanine supplementation with high-intensity interval training (HIIT) can substantially increase both endurance and aerobic metabolism. It also showed a clear and impressive impact on subjects’ lean muscle mass.

Plus, a third study that examined how beta-alanine impacted anaerobic power output by using tests of physical strength such as timed sprints and a 90° bent-arm hang found that supplementing with beta-alanine improved participants’ results across all categories. Participants who supplemented with beta-alanine were able to achieve simultaneous weight loss and lean body mass increases.

3. Citrulline

Supplementing with citrulline can significantly increase your blood levels of not only this important amino acid, but two other crucial amino acids as well: ornithine and arginine. This can have a wide range of health benefits.

According to findings published in the The Journal of Strength & Conditioning Research, even a single dose of citrulline can improve your physical performance as measured by a flat barbell bench press. It can also reduce post-exercise muscle soreness. Participants were able to complete approximately 53% more repetitions and reported 40% less muscle soreness at both 24 and 48 hours afterward.

A separate study published in the British Journal of Sports Medicine showed that citrulline reduced muscular fatigue and improved muscle metabolism as measured by oxidative ATP production and the rate of phosphocreatine recovery after exercise.

All in all, it appears that this amino acid can improve endurance and speed up recovery time.

Greater Than the Sum of the Parts

Your muscles aren’t composed of single amino acids, but rather 20 separate amino acids. Building muscle mass requires a steady supply of all those amino acids. Nine of those are essential amino acids, meaning you must get them from the foods you eat or supplements you take.

While certain amino acids have been shown to have more dramatic results when it comes to muscle growth, your rate of muscle protein synthesis will be limited by whichever essential amino acid is in the shortest supply. That’s why some of the foremost experts on amino acids believe that taking an essential amino acid (EAA) blend is ultimately the most effective way to build your muscle mass. Using a supplement formulated to include all the required amino acid building blocks stimulates the production of new muscle tissue more effectively than any single amino acid could.

Best Amino Acids for Muscle Growth

The best amino acids for muscle growth tip the balance in favor of muscle protein synthesis. And making a complete protein requires adequate availability of each of the amino acids. Read on to find out the formulation of amino acids that is best for building muscle.

Before we get into the best amino acids for muscle growth, let’s first review the makeup of muscle. Muscle tissue is composed of a variety of proteins that are in a constant state of turnover—proteins that are no longer functioning well are being broken down and new ones are being produced. Muscle growth occurs when the rate of synthesis of new muscle protein exceeds the rate of breakdown.

Muscle protein is composed of 20 different amino acids hooked together in a specific order. Nine of the amino acids are essential amino acids (EAAs) and cannot be produced in the body. The other 11 are nonessential (NEAAs) and can be produced in adequate amounts within the body.

Muscle protein synthesis (the building of new muscle protein) involves a series of molecular events that result in the component amino acids being linked together in a specific order. For this reason, amino acids are often called the building blocks of protein. Making a complete protein, therefore, requires adequate availability of each of the amino acids. In that sense, there is no individual best amino acids for muscle growth, because they are all required to produce muscle protein. Rather, there are formulations of amino acids that are “best” for specific circumstances, such as building muscle.

Where Do Amino Acids Come from for Muscle Protein Synthesis?

When protein is broken down during muscle protein turnover, amino acids are released into muscle cells. Most of these amino acids become the precursors for the synthesis of new muscle protein. However, some of the amino acids from protein breakdown are released into the blood and delivered to other tissues and organs, and still other amino acids from protein breakdown are irreversibly oxidized/damaged. Therefore, the rate of reincorporation of amino acids from protein breakdown into newly synthesized muscle protein will always be less than the rate of protein breakdown. Without other sources of amino acids, a reduction of muscle protein and subsequent muscle loss occurs.

There are two ways to get the additional amino acids you need for muscle protein synthesis.

  1. They are produced in the body. (NEAAs can be produced in the body, so only a minimal amount must be consumed in the diet to meet all demands.)
  2. EAAs, on the other hand, cannot be produced in the body and must be consumed in the diet.

Research shows that consuming EAAs stimulates muscle protein synthesis and helps build muscle, but eating more NEAAs doesn’t add any further stimulus. When EAAs are consumed, the additional NEAAs required for the production of complete proteins are produced in the body. Ingesting EAAs, either as dietary protein or as amino acid supplements, shifts the balance between synthesis and breakdown of muscle protein to favor the net production of new muscle protein, which defines muscle gain.

What Are the Best Amino Acids for Muscle Growth?

Muscle protein is composed of a specific amount of each amino acid, hooked together in a specific order. In that sense, all the amino acids are equally important, as a shortage of any of them will stop the process of synthesis.

The EAA in shortest supply is called the limiting EAA. The availability of the limiting EAA will limit the rate of muscle protein synthesis, regardless of the availability of all the other EAAs and NEAAs. Therefore, you could say that the limiting amino acid in any formulation of EAAs is the most important.

This is the major problem with supplements that only have the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine. Since the other essential amino acids are not provided, the rate of muscle protein synthesis is not improved. Because of this, BCAA supplements have been proven to provide a far smaller effect on muscle growth than a complete EAA formulation.

It is possible to gain insight into the amount of each EAA that is needed to avoid that EAA being the limiting EAA by looking at the requirements for the individual EAAs. By definition, NEAAs are not required in the diet, so when we talk about dietary requirements we are talking only about EAA requirements. The dietary requirement for each EAA differs. Here are the daily requirements for EAAs for adults as published by the Food and Agriculture Organization of the World Health Organization (FAO/WHO).

Best Amino Acids for muscle growth

The requirements are based on a number of factors, including the composition of total body protein. From the requirements shown above, it is clear that all EAAs are not “equal.” The requirements for leucine and lysine are the highest, while the requirement for tryptophan is quite low.

It could be argued that the best amino acids for muscle building parallel the individual requirements of the EAAs. Indeed, that is the basis for the official FAO/WHO grading of protein quality, called the Digestible Indispensable Amino Acid Score (DIAAS). Indeed, an EAA supplement that closely parallels this distribution will be an effective stimulant of muscle protein synthesis in any circumstance. The bottom line is that you need all the essential amino acids to have any effect on muscle mass, and any nonessential amino acid need not be included in a dietary supplement.

Leucine for Muscle Growth

There has been considerable research over the past 15 years that indicates that alternative mixtures of EAAs may be more beneficial in particular circumstances. Most of the research has centered on the EAA leucine. In addition to being the most abundant EAA in body protein, under certain circumstances, leucine can function to regulate molecular processes within the muscle cell. In those circumstances, it can be called a “nutraceutical.”

Leucine can activate the molecule called mTOR, which gets muscle protein synthesis started. Various conditions associated with progressive muscle breakdown and loss of muscle strength, such as cancer, heart failure, and aging, can suppress the activity of mTOR and associated molecules. When mTOR activity is limited, it may be preferable to increase the proportion of leucine to as high as 35% to activate mTOR. At the same time, activation of mTOR and associated molecules in the muscle cell is not sufficient to increase muscle protein synthesis. You also need an abundance of all EAAs to produce complete proteins. Therefore it is necessary to limit the proportion of leucine in an effective dietary supplement to below 40% so that sufficient amounts of the other EAAs can be included.

If extra leucine is added to a dietary supplement such as whey protein powder to capitalize on its action as a nutraceutical, then the remainder of the supplement should provide the other EAAs in proportion to their contribution to the composition of muscle protein. It seems logical that this would be dictated entirely by the composition of muscle protein, but it is not quite so straightforward.

The absorbed ratios of the different EAAs will not be directly reflected in the EAAs inside the muscle cells because some amino acids are transported into the cell faster than others. Lysine, in particular, is transported sluggishly into the muscle. When lysine is consumed, less lysine will enter the muscle cell than would be expected from the profile of the consumed EAAs. Consequently, to increase the lysine concentration inside the muscle cell in proportion to the lysine content of muscle protein it is necessary that lysine comprise 20% or more of the total EAAs consumed to achieve the maximal muscle-building effect.

Different Strokes for Different Folks

The most effective EAA supplement for muscle growth will have all the EAAs and roughly parallel the requirements cited above. However, alternative formulations may be “best” in different situations. For example, while a high proportion of leucine may be best for older individuals with heart failure, a disproportionate amount of leucine may not be needed by a young athlete after a resistance workout. This is because the resistance workout will activate mTOR and associated molecules, and if the proportion of leucine is in line with the composition of muscle protein (around 23%), then relatively more of all the other EAAs needed to produce complete protein can be included in the supplement.

Even the optimal formulation for exercise might vary, depending on when the supplement is consumed and the type of exercise. For example, endurance training causes a selective increase in leucine oxidation, in which case a supplement high in leucine would be optimal as a post-workout supplement following exercise to speed up muscle recovery.

If the EAA supplement is meant to be consumed as a pre-workout supplement for exercise performance, it may be formulated to optimize the concentrations of neurotransmitter precursor availability in addition to providing EAAs for muscle protein synthesis.

Regardless of the specific circumstance it is meant for, the “best” formulation will include all the EAAs and not just the BCAAs or specific amino acids like beta-alanine or arginine. A complete formulation will more effectively stimulate the production of new muscle protein than any individual or sub-group of EAAs possibly can.

9 Natural Remedies for Back Pain Relief

Few things can be as immediately disabling as back pain. Looking for back pain relief? Here are some natural remedies that can help get the pain off your back.

Few things can be as immediately disabling as back pain. Our backs are a delicate and complex structure of muscles, ligaments, joints, and bones. Back pain can be caused by a wide range of injuries, dehydration, inflammation, and certain underlying health conditions, and back pain relief can be difficult to come by.

Be it acute or chronic, back pain causes a reduction in physical activity, lost productivity at work, and overall poor quality of life scores according to a study published in the journal European Spine. 

Low back pain is incredibly common, not only in the United States but also globally. In fact, according to findings from the Global Burden of Disease 2010 study, low back pain is the leading cause of disability worldwide. Fortunately, there are effective natural pain management remedies that can help you enjoy life to the fullest.

Are You at Risk for Back Pain?

Nearly everyone will experience some type of back pain over the course of a year. According to a National Center for Health Statistics 2016 report, during 2012 more than 125 million adults in the United States had a musculoskeletal pain disorder. This staggering figure accounts for more than 50% of the U.S. adult population.

It must be noted that musculoskeletal pain is classified as pain related to nerves, tendons, ligaments, muscles, and bones, not just in the back. The Cleveland Clinic also puts fibromyalgia, arthritic pain, and carpal tunnel syndrome in the same category.

In the general population, researchers report the lifetime prevalence of back pain high at 85%. This surprising statistic comes from a comprehensive review conducted by researchers from the Department of Sports Medicine and Sports Nutrition in Germany.

This same review also found that in athletes, the lifetime prevalence can be as high as 94%, and it identifies rowing and cross-country skiing as sports with the greatest risk.

Of course, there are also risk factors for chronic pain conditions, such as occupations that increase your likelihood of suffering an injury to the back muscles or sustaining muscle pain. In a review of the National Health Interview Survey completed by the National Institutes of Health, the following occupations have the highest rate of low back pain—attributed directly to the job:

  • Construction and Extraction: 11.22%
  • Healthcare Practitioners and Healthcare Support: 10.61%
  • Personal Care and Service: 8.27%
  • Transportation and Moving: 7.74%

Your risk for developing back pain increases according to a cross-sectional study published in the Annals of the Rheumatic Diseases if you:

  • Are obese
  • Smoke
  • Are inactive
  • Have family members with chronic back pain

Types of Back Pain

Back pain can be classified as either acute or chronic. Acute back pain can last anywhere from 4 to 12 weeks, and generally does not require traditional medical intervention. However, when back pain persists or worsens for 12 weeks or longer, the pain is considered chronic, and a consultation with your health care provider is advised.

Pain in the back can present in the:

  • Lower back
  • Middle back
  • Upper back
  • Neck and shoulders
  • Glutes

Back pain can be described as:

  • Nagging
  • Radiating
  • Throbbing
  • Pinching
  • Mild
  • Moderate
  • Severe

Keeping a journal of your pain can help you find a successful treatment. Take note of the type of pain, severity, when it occurs and for how long, the location of the pain, and what you were doing when it occurred. These details can help your wellness team identify the best course of action to relieve your back pain naturally.

Common Causes of Back Pain

According to Weill Cornell Medicine’s Center for Comprehensive Spine Care, there is a wide range of injuries and medical conditions that can cause back pain. Their list includes:

Muscle injuries and muscle strains Vertebral fractures Pregnancy
Spinal stenosis, a narrowing of the spinal canal Scoliosis Obesity
Degenerative disc disease Tumors Anxiety
Pinched or compressed nerves Osteoporosis Smoking
Lack of physical activity Aging

The Center for Comprehensive Spine Care makes a special effort to identify the symptoms of thoracic back pain. This type of back pain occurs in the upper back and it may indicate a serious or even potentially life-threatening underlying condition. If you experience upper back pain and any of the following symptoms, seek medical attention immediately.

  • Fever
  • Unexplained weight loss
  • Deformity of the spine
  • Nerve pain in the lower body
  • Numbness or tingling in the legs or lower body
  • Severe stiffness
  • Severe constant pain
  • Changes in bladder or bowel function

9 Natural Remedies for Back Pain Relief

1. Fish Oil (2,000 milligrams a day)

Omega-3 fatty acids make an essential contribution according to the Harvard T.H. Chan’s School of Public Health. Omega-3s cannot be produced in the body; they must be consumed. The richest sources are coldwater fish, walnuts, and flax seeds.

Every healthy diet should include a variety of foods with these essential fats to reap their health benefits. However, when you are experiencing back pain, taking a high-quality supplement of 2,000 milligrams a day may be advised. In a landmark study conducted by the Department of Neurological Surgery at the University of Pittsburgh Medical center, fish oil was shown to be as effective and safer than NSAIDs in relieving back pain.

While omega 3s are well-tolerated in food, check with your doctor prior to taking a fish oil supplement if you have type 2 diabetes, take blood thinners, or have a bleeding disorder or a shellfish allergy.

2. Turmeric (1,000 milligrams a day)

Curcumin, the active ingredient in turmeric that fights inflammation and reduces pain, is one of the most effective natural compounds in the world. Researchers from the University of Texas M.D. Anderson Cancer Center’s Department of Experimental Therapeutics conducted a clinical trial that found that natural compounds including curcumin are more effective than aspirin or ibuprofen.

Curcumin’s health benefits extend beyond its anti-inflammatory properties. In fact, in a systematic review published in the Journal of Alternative and Complementary Medicine, researchers state curcumin is safe in doses up to 2500 milligrams a day and can be used to treat a wide range of conditions. Current clinical trials are focusing on curcumin’s ability to prevent cancer, fight cancer, and even make traditional cancer treatments like chemotherapy more effective.

Incorporating turmeric into your diet is easy. The small orange root is now readily available in most grocery stores. Just look for it near the fresh ginger. But please note, when using fresh or powdered turmeric, to get its full benefit, it must be combined with black pepper. Piperine, an essential compound in black pepper, makes it easier for the body to absorb curcumin.

Turmeric is easy to incorporate into salad dressings, stews and soups, and rice dishes for daily enjoyment. When you feel you need an extra boost of curcumin’s anti-inflammatory powers, sip on a turmeric latte. This delightful warm drink can be made with ingredients in your pantry—just don’t forget to add the black pepper!

3. D-Phenylalanine (1,500 milligrams a day, for several weeks)

D-Phenylalanine, or DPA, is one of the essential amino acids that is recognized for its power to reduce low back pain according to University of Michigan’s, Michigan Medicine. They report DPA decreases pain and can inhibit chronic pain in some cases. There are currently 48 clinical trials evaluating the safety and efficacy of phenylalanine on conditions like cystic fibrosis and PKU, as well as the levels needed for wellness.

To learn more about taking phenylalanine for back pain, check out this article.

4. L-Tryptophan (2-6 grams a day)

Tryptophan, most commonly associated with turkey “comas” on Thanksgiving, is another of the essential amino acids that can help when you are experiencing upper back pain, middle back pain, or lower back pain. Tryptophan plays a critical role in back pain relief by helping to repair muscle tissue that has been damaged. Additional tryptophan benefits include reducing anxiety and depression.

An important note about amino acid supplements: The balance of amino acids in your blood is a delicate one. Because certain amino acids hitch a ride on the same transporter for entry into the brain, increasing levels of one without increasing levels of the other can restrict access and adversely affect mind and mood. For this reason, it’s recommended to supplement with a complete essential amino acid blend formulated with an ideal ratio of aminos.

5. Collagen (2-5 grams a day)

A vital protein, and the most abundant in the human body, collagen is the substance that gives our skin, hair, ligaments, and tendons the fuel they need. If your joints creak or pop, you may not have enough collagen “greasing the wheel” between your joints. And that can increase the risk for joint deterioration that can cause arthritis and chronic back pain.

Collagen is recognized for improving skin health, hair health, IBS symptoms, cellulite, and muscle mass, and has even garnered a reputation as an effective treatment for joint disorders and osteoarthritis according to researchers from the University of Illinois’ College of Medicine. This study specifically points to the efficacy of collagen hydrolysate.

Think of collagen hydrolysate as gelatin. It is rich in amino acids, but it has been processed fairly extensively to make the proteins smaller and more easily absorbed. Seek a high-quality supplement from a reputable company to add to your diet. While generally considered safe, some mild side effects have been reported with collagen supplements, namely digestive upset and heartburn.

6. Acupuncture

A popular and time-tested holistic technique, acupuncture has been shown to improve chronic back pain. In a large-scale clinical trial, researchers from Memorial Sloan-Kettering’s Department of Epidemiology and Biostatistics evaluated the efficacy of acupuncture for back and neck pain, arthritis pain, chronic headaches, and shoulder pain. The researchers determined that acupuncture is effective for chronic pain and verified that acupuncture has more than a placebo effect.

7. Massage

Massage is known for relieving stress, anxiety, pain, and a variety of other health conditions. Professional athletes often turn to massage after a tough workout or game to help relieve sore or strained muscles. Massage therapists can target specific muscles, ligaments, tendons, and connective tissues that are causing back pain.

There are a number of massage modalities, with some dating back to ancient China. Depending on the root cause of the back pain, a licensed and experienced massage therapist might recommend a deep tissue, sports, soft tissue, or Shiatsu massage. Massage is believed to relieve low back pain by improving circulation, releasing tension, increasing endorphin levels, and improving range of motion. Understand that it may take multiple sessions to accomplish relief.

8. Capsaicin Cream

Made from the compound found in cayenne and other hot peppers that cause the burning sensation and taste, capsaicin promotes pain relief, particularly for back pain, according to a study published in the journal Molecules. Available both over-the-counter and by prescription, a topical capsaicin cream can provide immediate back pain relief.

It is important to purchase a high-quality product and apply it as directed on the packaging. In itself, capsaicin can create pain, but it can also relieve the discomfort and pain caused by soft tissue injuries, fibromyalgia, arthritis, and muscle pulls or strains. Researchers believe that the heat generated by the capsaicin works by activating pain receptors that cause the brain to release pain-fighting hormones.

9. DIY Pain Relief Rub

Beyond using heating pads to soothe muscle tension and back pain, you can whip up a quick DIY pain relief rub. For a quick DIY topical back pain reliever (that smells great too!) use the recipe below. This home remedy is perfect for relieving lower back pain after a hard workout or pulling weeds. When applied, it provides a cooling, yet invigorating effect because of the menthol in the peppermint oil.

DIY Pain Relief Rub

  • 5-7 drops peppermint essential oil
  • 5-7 drops lavender essential oil
  • 5-7 drops marjoram essential oil
  • 2 teaspoons freshly ground black pepper
  • 1/4 cup coconut oil or jojoba oil

Mix all ingredients together until well combined. Massage into sore muscles and joints daily, or as needed.

Natural remedies for back pain relief

6 Lifestyle Changes to Prevent Back Pain

1. Exercise Regularly

The more you move, the better. Regular exercise is important for keeping your strength, flexibility, balance, and cardiovascular health at their pinnacle. Low-impact exercise like walking, riding a bike, and swimming are good options when you have back pain.

In addition to weight management, regular exercise has been shown to help:

Aim for 180 minutes each week, or 30 minutes a day, of moderate, low-impact exercise to relieve back pain and discomfort. The other health benefits will help to prevent additional injury and improve cardiovascular function.

Natural remedies for back pain relief

2. Stay Hydrated

Drink at least 8 ounces of pure water for every 10 pounds of body weight to stay properly hydrated. When you are dehydrated, the natural lubrication in your spinal discs is depleted and can result in backaches and fatigue.

Kidney stones and urinary tract infections are more worrisome side effects of dehydration and can both cause back pain. According to the National Kidney Foundation, it is vital to drink enough water during workouts and periods of hot weather as prolonged or frequent dehydration can cause kidney damage.

3. Lift Heavy Items Properly

Avoiding back injury is the best way to prevent back pain. According to the Mayo Clinic, it is important to use proper lifting techniques to avoid back pain. The Mayo Clinic recommends:

  • Starting in a safe position
  • Maintaining the natural curve of your spine
  • Using your legs to lift the weight
  • Squatting instead of kneeling
  • Avoiding twisting

4. Practice Pilates

Joseph Pilates developed this practice of stretching and body conditioning while interned during World War I. The reformer, which is widely used in Pilates studios today, is modeled after the first equipment he developed in the internment camp using bunk beds, springs, and ropes.

Pilates is focused on increasing core strength and creating long fluid muscle groups. This practice can help prevent injuries to the back and provide back pain relief. If you do have back pain, medical research shows that a regular Pilates practice is a great way to strengthen your core to prevent low back pain. In the just-released results of a randomized controlled trial, 12 weeks of Pilates practice improved chronic back pain.

Most metropolitan areas have established Pilates studios where experienced instructors and reformers are available. If a studio is not available in your area, Pilates equipment, including reformers, are available for home use.

5. Tai Chi

This ancient martial art has been practiced for thousands of years. It is characterized by slow, precise, and controlled movements—a very different discipline than other martial arts that focus on explosive power. Tai chi epitomizes the mind-body connection, as every fiber of your being must be engaged for best practice.

According to Harvard Medical School, the health benefits of tai chi include aerobic conditioning, improved flexibility and balance, better muscle strength and muscle response, and a reduction in falls. Tai chi can be practiced by virtually anyone, in any health condition. It involves low-impact and slow-motion isolating muscle groups responsible for core strength, balance, and confidence.

6. Yoga

Millions of Americans practice a form of yoga. This practice combines deep relaxation, deep breathing, meditation, and strength-training postures that are mixed together in balance to create a discipline known for reducing pain and improving balance, flexibility, and strength.

According to Harvard Medical School, yoga’s proven health benefits include:

  • Reducing your risk of heart disease
  • Relieving migraines
  • Fighting osteoporosis
  • Alleviating the pain of fibromyalgia
  • Easing multiple sclerosis symptoms
  • Increasing blood vessel flexibility (69%!)
  • Shrinking arterial blockages

Regular yoga practice can help you prevent injury and back pain. And, if you have low back pain, a systematic review and meta-analysis focusing on the effectiveness of yoga and back pain showed that yoga is effective for both short-term and long-term relief of chronic low back pain.

Natural remedies for back pain relief

Precautions

As mentioned above, back pain accompanied by certain other symptoms can be a sign of serious underlying health conditions. If you experience back pain and any of the following symptoms, please consult with your physician immediately:

  • High fever
  • Chills
  • Dizziness
  • Numbness or tingling in any part of the body
  • Deformity of the spine
  • Unexpected weight loss
  • Extreme stiffness
  • Severe constant pain
  • Changes in bladder or bowel function

Back pain symptoms tend to recur, with studies showing a recurrence rate of somewhere between 24% and 80%. To protect against future episodes of back pain, learn to lift heavy items properly and build your core strength to reduce your risk of injury.

At the End of the Day

Back pain is costly. It affects productivity at work, health care costs, and most importantly your quality of life. Whether acute or chronic, when you are in pain, the only thing you can focus on is effective back pain relief. Whether it strikes as lower back pain, middle back pain, or as neck and shoulder pain, pain is pain and finding the natural back pain remedy to ease your pain and speed up the healing process is essential.

Once the root cause of your back pain is determined, natural lower back pain remedies and upper back pain remedies are available. The key is finding the combination of treatments that work for you. Whether it is a high-quality amino acid supplement, a DIY essential oil rub, yoga, or Pilates, you can improve your quality of life and relieve your discomfort.

Leucine Muscle Building and Performance: The Magic Bullet?

Leucine has received special attention for its role in muscle building, not only because it is the most abundant EAA in muscle protein, but also because of its nutraceutical role as a regulator of muscle protein synthesis. Is leucine the “magic bullet” of muscle building?

Leucine is one of the nine essential amino acids (EAAs). EAAs are considered “essential” because the body can’t make them, and they must be consumed as part of the diet. Among the EAAs, leucine has received special attention for its role in muscle building, not only because it’s the most abundant EAA in muscle protein, but also because of its nutraceutical role as a regulator of muscle protein synthesis—the process of muscle building. But are these leucine muscle building benefits the “magic bullet,” or is leucine no more or less important than any of the other EAAs? The truth is that it falls somewhere in between.

What Is Leucine?

Leucine is one of the three branched-chain amino acids (BCAAs), the other two being isoleucine and valine. The term branched-chain refers to the chemical structure of these EAAs, which consists of branched side chains—the shorter chains of atoms attached to the main chain, or backbone, of the molecule.

Leucine is the best known of the BCAAs and is, as already mentioned, the most abundant EAA in muscle tissue. In addition, leucine acts as a signal to activate various cellular functions, including the process of protein synthesis.

How Muscle Protein Synthesis Works

Muscle protein is in a constant state of turnover, being continuously broken down and resynthesized. Muscle building takes place when the rate of muscle protein synthesis exceeds the rate of muscle protein breakdown. This can occur when there’s a stimulated rate of muscle protein synthesis, a suppression of muscle protein breakdown, or a combination of the two.

The process of muscle protein synthesis itself involves the hooking together of a series of amino acids in a very specific sequence and amount. Under normal conditions, most of the amino acids that hook together to form new muscle protein are those released during protein breakdown.

However, about 15% to 20% of the amino acids released during protein breakdown are not available to build new muscle protein. Some are irreversibly oxidized, while others are released into the bloodstream and taken up by other tissues and organs. For this reason, an additional source of amino acids is needed so that the rate of protein synthesis can catch up with, or exceed, the rate of protein breakdown.

Eleven of the amino acids in body protein are nonessential, which means the body produces them on its own to meet the demands of protein synthesis rates. By contrast, EAAs such as leucine must be consumed in the diet since they can’t be produced in the body. For this reason, consuming sufficient EAAs is mandatory for increasing the rate of muscle protein synthesis.

Leucine Muscle Building Supplements

Muscle protein can’t be built with leucine alone. In fact, for new muscle protein to be produced, all of the EAAs must be available in proportion to their respective contributions to the composition of that protein.

Since leucine is the most abundant EAA in muscle protein, comprising about 23% of the total EAAs, high leucine intake is essential for the production of muscle protein. Consequently, the profile of EAAs consumed for the purpose of stimulating muscle protein synthesis—whether in a natural protein food source or an amino acid supplement—must contain a relatively high proportion of leucine.

There’s no debate about the importance of leucine as a building block of muscle protein. Neither is there any controversy regarding the need for leucine to make up at least 20% to 25% of consumed EAAs to maximally stimulate muscle protein synthesis.

The question is, rather, whether the effects of leucine are so unique that this one substance should constitute a disproportionately greater amount of a dietary amino acid supplement compared with the other EAAs. In other words, is leucine supplementation alone beneficial for building muscle?

Keep in mind that this question is relevant only to amino acid supplements, as there is no natural protein source made up of more than 23% leucine, and there is no natural protein source that contains only leucine. So, in order to answer this, we must first understand leucine’s role as a nutraceutical.

Leucine has been called a nutraceutical because it has the ability to stimulate muscle protein synthesis on its own and is more than just one of the components of muscle protein. In fact, leucine can actually initiate the process of protein synthesis by activating a group of intracellular compounds known collectively as initiation factors.

The key initiation factor activated by leucine is a protein called mammalian target of rapamycin (mTOR), which acts as a sensor within the cell. When leucine concentrations are low, mTOR receives the signal that there’s not enough dietary protein present to build new skeletal muscle protein and is deactivated. But when the concentration of leucine within the cell increases, mTOR is activated.

Activation of mTOR can increase the amount of muscle protein produced, provided there are enough of the other EAAs (in addition to leucine) available to make complete proteins.

Muscle Protein Synthesis and mTOR

In normal, healthy adults, mTOR can be activated and muscle protein synthesis stimulated with a balanced EAA supplement, so there’s no need for extra leucine. However, in many clinical states, muscle protein synthesis is just not as responsive when EAAs are consumed, either as food or as supplements.

When this happens, it’s referred to as anabolic resistance—the reduced stimulation of muscle protein synthesis in response to protein intake. Anabolic resistance often occurs alongside conditions such as cancer or severe trauma or illness or during the regular process of aging.

During a state of anabolic resistance, an EAA supplement containing a disproportionately high amount of leucine (35% to 40%) may be needed to activate mTOR and overcome the resistance.

My team and I actually discovered this in 2006, when we studied the beneficial effects of an EAA mixture with leucine on muscle protein metabolism in elderly and young individuals. You can read about the study, published in the American Journal of Physiology, Endocrinology, and Metabolism, here.

But leucine is not the only way to activate mTOR. Resistance exercise can also further elevate mTOR, providing the potential for increased muscle protein synthesis. However, when engaged in resistance training, sufficient EAAs must be available for the further activation of mTOR to translate into increased protein synthesis.

Put simply, you can’t make something out of nothing. And that’s because a shortage of even one EAA will limit the stimulation of muscle protein synthesis, even after a heavy resistance workout. So while mTOR activation isn’t always linked to increased protein synthesis, it is an anabolic signal when all the necessary components are present.

Leucine Alone Isn’t Enough

The best way to envision the role of leucine in protein synthesis is to think of the EAAs as a football team, where leucine is the quarterback and the other positions are filled with other EAAs, each with their own specific role. Just as a team of only quarterbacks wouldn’t have much success in a game, a nutritional supplement wouldn’t have much success if it contained only leucine.

There have been a number of studies examining the effectiveness of leucine as a nutritional supplement. And as predicted by the analogy above, leucine alone has been shown to have little effect on muscle building—according to a 2011 study published in the Journal of Nutrition.

Compare these findings with a study we published in the journal Clinical Nutrition that showed how a formulation of EAAs with a high proportion of leucine (35% to 40%) helped overcome anabolic resistance and improve muscle mass, strength, and physical function in the elderly.

Leucine is important, but it can’t do the job alone!

Leucine and Muscle Protein Breakdown

The role of leucine in stimulating muscle protein synthesis has been studied extensively, but the building of muscle is determined not only by the rate of protein synthesis but also by the balance between the rates of synthesis and breakdown.

With this in mind, it’s interesting to note that leucine also has the ability to reduce the rate of muscle protein breakdown and, thus, muscle loss. One reason for this is that leucine can stimulate the release of the hormone insulin, and the suppression of muscle protein breakdown by insulin is well known.

As one of the BCAAs, leucine can also suppress protein breakdown directly. However, suppressing muscle protein breakdown only helps build new muscle if the rate of muscle protein synthesis is greater than the rate of breakdown, and this may not occur when consuming just leucine or BCAAs.

In fact, a reduction in muscle protein breakdown caused by leucine or BCAAs alone is accompanied by a corresponding reduction in the rate of muscle protein synthesis. This reflects the fact that the major source of EAAs for building new muscle protein is the EAAs that are released by protein breakdown. Therefore, if muscle protein breakdown is suppressed, the availability of EAAs for protein synthesis is also reduced.

As in the case of muscle protein synthesis, leucine can play a potentially important role in building muscle by inhibiting the rate of muscle protein breakdown, but to increase the anabolic response—meaning synthesis is greater than breakdown—all the EAAs must be consumed.

Leucine and Performance

Leucine is oxidized at an increased rate during endurance sports. This is evidenced in a study published in the Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology. Although a large portion of total energy production isn’t derived from leucine oxidation during exercise, the amount of leucine oxidized is significant in terms of the amount available for incorporation into protein.

In other words, the increased oxidation of leucine during exercise can make its availability—or lack thereof—limiting for the production of new muscle protein.

This is why it’s necessary to consume EAAs in general, and leucine in particular, post exercise. Consuming protein shakes, whey protein, or EAAs after exercise will not only prevent the loss in muscle protein that would occur otherwise (because of the oxidation of leucine) but will also increase muscle protein synthesis and increase muscle strength and function.

Leucine and Type 2 Diabetes

We’ve known for 50 years that blood concentrations of leucine (and the other BCAAs) are elevated in individuals with type 2 diabetes. This knowledge has spurred theories that the BCAAs, and leucine in particular, are somehow involved in the development of insulin resistance and, ultimately, type 2 diabetes.

A recently proposed theory that’s been gaining popularity is based on the premise that the activation of mTOR may be involved in causing insulin resistance. However, this theory is contradicted by studies that have shown that increasing leucine concentrations in dietary supplements not only doesn’t cause insulin resistance but may also, in some circumstances, actually improve blood sugar control.

Studies have also shown that supplementing with all the BCAAs can improve insulin sensitivity in a variety of insulin-resistant states.

Additional Benefits of Leucine

Leucine serves other functions as well. For example, it:

  • Increases the number of muscle mitochondria—the organelles where adenosine triphosphate (ATP) is generated to fuel muscle contraction during exercise
  • Promotes the growth and repair of bone tissue
  • Stimulates growth hormone production
  • Speeds wound healing

Perhaps the most important takeaway here is that leucine—like most things in life—can’t do what it does alone. It needs the help of all the EAAs to be the magic bullet of muscle building the body needs.

Is leucine the “magic bullet” of muscle building?

What’s with HMB Supplements?

HMB has been shown to promote muscle gain in individuals who are working out. However, this muscle-promoting effect is dependent on adequate availability of essential amino acids (EAAs). HMB supplements without the support of EAAs just don’t cut it.

From hydroxymethylbutyrate to beta-hydroxy-beta-methylbutyrate (or β-hydroxy-β-methylbutyrate), HMB—a chemical produced when the body breaks down the amino acid leucine—is known by a variety of names. But what exactly are HMB supplements?

HMB supplements are promoted as nutritional substances that can help speed wound healing and support individuals with muscle-wasting diseases such as cancer and HIV. Proponents also tout HMB supplements (or HMB in combination with creatine monohydrate) as a way to slow the muscle wasting that comes with aging.

To be fair, research does support the presence of some beneficial effects of HMB. For example, it’s been shown to promote muscle growth in individuals who work out. However, it should also be noted that this muscle-promoting effect is dependent on the adequate availability of essential amino acids (EAAs).

In other words, HMB supplements in isolation, without the support of EAAs, have a minimal effect on muscle building.

How Does HMB Work?

HMB and the EAA leucine are closely linked, and it’s necessary to understand the relationship between them to understand how HMB works.

Leucine is the most abundant of the nine EAAs found in muscle protein. It also acts as a nutraceutical aid in turning on the body’s muscle-building switch. In fact, it’s one of the three branched-chain amino acids—the others being isoleucine and valine—that make up about a third of muscle protein. Some experts also propose that leucine turns on the process of protein synthesis (muscle building) via the action of HMB.

HMB is a metabolite of leucine, meaning it’s derived from the breakdown of leucine. In a series of step-by-step reactions, about 15% of the leucine present in blood is also irreversibly broken down to ammonia and carbon dioxide. This sequence of reactions by which leucine is reduced to its basic components is called a metabolic pathway.

But there’s more than one metabolic pathway involved in the breakdown of leucine. And it’s actually via a minor pathway that the leucine metabolite HMB is produced, yet it’s still proposed to be the active component of leucine. However, as leucine is being broken down by the body, only about 5% of it is broken down via the pathway that results in HMB.

Combine this with the fact that only 15% of leucine is broken down at any given time, and it’s clear that the amount of HMB produced by leucine breakdown makes up only a very small percentage of available leucine.

As a result, the concentration of HMB in body fluids is far less than that of leucine. And since results with dietary supplementation aren’t achieved unless the concentration of HMB is increased many times above the normal physiological level, it’s unlikely that leucine’s effects on muscle protein synthesis are, in fact, mediated by HMB.

However, when the availability of HMB is increased using dietary supplements, it seems to work as a nutraceutical in the same way leucine does in that it activates the molecular mechanisms involved in the initiation of protein synthesis.

Specifically, the increase in HMB concentration supplied by supplementation activates a molecule known as mammalian target of rapamycin, or mTOR.

The molecule mTOR plays a key role in controlling the initiation of protein synthesis. When mTOR is activated, a series of additional chemicals involved in the initiation of protein synthesis is activated as well. And when all of these molecules are switched on, the process of protein synthesis begins. Likewise, when mTOR is activated by excess levels of HMB, the process of protein synthesis is also stimulated.

A sustained increase in muscle protein synthesis should ultimately be reflected by an increase in muscle strength, function, and mass over time. However, the use of HMB alone does not result in an increase in protein synthesis.

In fact, any increase in protein synthesis resulting from HMB supplements will last only as long as there’s an adequate supply of EAAs. And once there’s a dip in the EAA supply, the effect of HMB stops as well.

HMB Needs EAAs to Work

If you activate mTOR but your body doesn’t have enough EAAs circulating in the bloodstream, then muscle protein synthesis will only be increased to a limited extent.

As stated earlier, muscle protein contains nine EAAs, each of them unique and each a vital component of newly produced proteins. Unlike the 11 nonessential amino acids, EAAs can’t be produced in the body and have to be obtained through dietary sources.

However, if you aren’t getting enough EAAs through protein-rich foods or EAA supplements, then your only source of EAAs is the protein already present in your body.

In this case, your body begins to break down its protein stores and release the component amino acids, including EAAs, for use by the cells of the body. However, under normal conditions, only about 85% of amino acids released in this manner are reincorporated into protein; the rest are lost to oxidation.

But let’s circle back to HMB.

To be effective on its own, HMB must increase the efficiency of EAA reutilization for protein synthesis. However, as we just indicated, that process is already 85% efficient, which means there’s a definite limit as to how much more efficient the recycling of EAAs back into protein can be.

Therefore, it becomes clear that dietary supplementation with HMB works only when there’s an excess amount of EAAs available. And an excess supply of EAAs can occur via only two mechanisms:

  • EAAs must be consumed at the same time as HMB
  • The rate of protein breakdown must be accelerated

However, an increase in protein breakdown would only undermine the beneficial effect of an increase in protein synthesis, as protein gain is the result of the balance between protein synthesis and breakdown. Thus, supplemental doses of HMB can only result in a sustained increase in the net gain of muscle protein if consumed at the same time as an abundant supply of EAAs.

Benefits of HMB Supplements

All this being said, there are still a few conditions—such as catabolic states involving rapid muscle loss—that may benefit from HMB supplementation. This is because protein breaks down much more rapidly in catabolic states such as critical illness or HIV.

This protein breakdown provides extra EAAs that would, under normal conditions, be oxidized. In these situations of increased EAA availability that occur during catabolic states, the anti-catabolic action of HMB may help maintain muscle mass and function and decrease the rate of muscle protein breakdown.

However, recommendations for catabolic states generally specify that HMB should be included as part of a multifaceted approach for muscle maintenance that also incorporates resistance training and a high-protein diet for EAA maintenance.

Exercise also accelerates muscle breakdown (via muscle damage that occurs as a natural part of muscle use) and EAA oxidation. Consequently, the use of supplemental HMB may result in improved performance by improving the reutilization of EAAs released by protein breakdown for the synthesis of new protein.

Is HMB Better Than EAAs Featuring Leucine?

The body’s response to dietary supplementation with HMB alone is similar to that resulting from supplementation with leucine alone.

Just as HMB requires the presence of elevated levels of all the EAAs, so, too, does leucine require the other EAAs to be effective. In addition, the body’s response is more robust when leucine is included as part of a mixture of all the other EAAs than when it (or HMB) is used alone.

Two studies performed in the same laboratory, using the exact same protocol, demonstrate this most clearly. In one experiment, the effectiveness of HMB was assessed, and in the other experiment, the effectiveness of a mixture of EAAs (containing about 40% leucine) was determined.

Both studies investigated how effective HMB and EAA supplements were, compared with a placebo, at diminishing the loss in muscle mass and function that normally occurs with inactivity.

The subjects tested were over the age of 65, and both lean body mass and performance on various physical function tests were measured before and after 10 days of strict bed rest.

In the first study, following 10 days of bed rest, participants were put through a strength training program for a period of 8 weeks. In addition, beginning 5 days prior to bed rest and lasting until the end of the rehabilitation phase, the control group received a placebo powder and the subjects in the experimental group received 1.5 grams of HMB twice daily in its calcium salt form, for a total of 10 weeks of supplementation.

In the second study, participants in the control group received a placebo, while subjects in the experimental group received 15 grams of EAAs 3 times a day throughout the entire 10 days of bed rest. However, in this study, neither group received any weight training.

When comparing the data collected on all the subjects included in these studies, it becomes clear that the major differences between HMB and EAAs can be seen in terms of the tests of physical function—all of which have been validated as representative of the normal physical requirements for activities of daily living in older adults.

While the placebo group had major impairments in all tests of physical function after 10 days of bed rest, those given EAA supplementation—but not HMB supplementation—had significantly improved outcomes.

For example, the time required for subjects to go from a standing position to the floor and back up again (floor transfer test) increased by approximately 40% in the placebo group. Floor transfer rate was also not significantly affected by HMB supplementation. However, the group given EAA supplementation shortened their floor transfer time by 6%.

In another example, the time required to walk up a flight of stairs increased by 18% in the placebo group. HMB once again had no beneficial effect on this response, but those receiving EAA supplementation showed virtually no increase in the amount of time it took them to perform this task.

Finally, the number of toe raises (test of foot flexibility) that could be completed in 1 minute was reduced by almost 80% in both the control group and the HMB supplementation group, whereas the loss of this function with bed rest was completely prevented with EAA supplementation.

These bed rest studies are the only direct comparison that’s been completed of the muscle-building effects and strength gains provided by dietary supplementation with HMB and a formulation of EAAs. Yet the results clearly demonstrate the beneficial effects of EAAs in preventing declines in physical function and fail to demonstrate any beneficial effect of HMB alone.

These results are also consistent with the fact that stimulation of protein synthesis requires the availability of excess amounts of all component amino acids—especially EAAs.

While HMB’s activation of mTOR and other molecules involved in the initiation of protein synthesis may result in a transient increase in muscle protein synthesis, this increase can’t be sustained at a rate sufficient to result in improvements in physical function.

The HMB Takeaway

HMB is widely promoted as a muscle-building molecule that stimulates protein synthesis. While in some cases HMB supplementation may provide benefits, direct comparison with EAA supplementation highlights the fact that any benefit provided by HMB is minimal.

Whatever molecular signaling occurs as a result of HMB supplementation can instead be achieved by taking an EAA supplement that contains leucine. The availability of all EAAs—which are not present in HMB supplements—in excess amounts is required for a sustained increase in protein synthesis, muscle cell growth, and body composition changes that result in greater lean mass versus fat mass.

Furthermore, combining HMB with EAAs would not be expected to be particularly helpful, as the EAAs would elicit the action of HMB on their own.

HMB Supplements